ترغب بنشر مسار تعليمي؟ اضغط هنا

82 - Yezhen Wang , Bo Li , Tong Che 2021
Confidence calibration is of great importance to the reliability of decisions made by machine learning systems. However, discriminative classifiers based on deep neural networks are often criticized for producing overconfident predictions that fail t o reflect the true correctness likelihood of classification accuracy. We argue that such an inability to model uncertainty is mainly caused by the closed-world nature in softmax: a model trained by the cross-entropy loss will be forced to classify input into one of $K$ pre-defined categories with high probability. To address this problem, we for the first time propose a novel $K$+1-way softmax formulation, which incorporates the modeling of open-world uncertainty as the extra dimension. To unify the learning of the original $K$-way classification task and the extra dimension that models uncertainty, we propose a novel energy-based objective function, and moreover, theoretically prove that optimizing such an objective essentially forces the extra dimension to capture the marginal data distribution. Extensive experiments show that our approach, Energy-based Open-World Softmax (EOW-Softmax), is superior to existing state-of-the-art methods in improving confidence calibration.
200 - Bo Li , Yifei Shen , Yezhen Wang 2021
The main challenge for domain generalization (DG) is to overcome the potential distributional shift between multiple training domains and unseen test domains. One popular class of DG algorithms aims to learn representations that have an invariant cau sal relation across the training domains. However, certain features, called emph{pseudo-invariant features}, may be invariant in the training domain but not the test domain and can substantially decreases the performance of existing algorithms. To address this issue, we propose a novel algorithm, called Invariant Information Bottleneck (IIB), that learns a minimally sufficient representation that is invariant across training and testing domains. By minimizing the mutual information between the representation and inputs, IIB alleviates its reliance on pseudo-invariant features, which is desirable for DG. To verify the effectiveness of the IIB principle, we conduct extensive experiments on large-scale DG benchmarks. The results show that IIB outperforms invariant learning baseline (e.g. IRM) by an average of 2.8% and 3.8% accuracy over two evaluation metrics.
105 - Sicheng Zhao , Yezhen Wang , Bo Li 2020
Due to its robust and precise distance measurements, LiDAR plays an important role in scene understanding for autonomous driving. Training deep neural networks (DNNs) on LiDAR data requires large-scale point-wise annotations, which are time-consuming and expensive to obtain. Instead, simulation-to-real domain adaptation (SRDA) trains a DNN using unlimited synthetic data with automatically generated labels and transfers the learned model to real scenarios. Existing SRDA methods for LiDAR point cloud segmentation mainly employ a multi-stage pipeline and focus on feature-level alignment. They require prior knowledge of real-world statistics and ignore the pixel-level dropout noise gap and the spatial feature gap between different domains. In this paper, we propose a novel end-to-end framework, named ePointDA, to address the above issues. Specifically, ePointDA consists of three modules: self-supervised dropout noise rendering, statistics-invariant and spatially-adaptive feature alignment, and transferable segmentation learning. The joint optimization enables ePointDA to bridge the domain shift at the pixel-level by explicitly rendering dropout noise for synthetic LiDAR and at the feature-level by spatially aligning the features between different domains, without requiring the real-world statistics. Extensive experiments adapting from synthetic GTA-LiDAR to real KITTI and SemanticKITTI demonstrate the superiority of ePointDA for LiDAR point cloud segmentation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا