ترغب بنشر مسار تعليمي؟ اضغط هنا

It is shown that a classical optical Fourier processor can be used for the shaping of quantum correlations between two or more photons, and the class of Fourier masks applicable in the multiphoton Fourier space is identified. This concept is experime ntally demonstrated using two types of periodic phase masks illuminated with path-entangled photon pairs, a highly non-classical state of light. Applied first were sinusoidal phase masks, emulating two-particle quantum walk on a periodic lattice, yielding intricate correlation patterns with various spatial bunching and anti-bunching effects depending on the initial state. Then, a periodic Zernike-like filter was applied on top of the sinusoidal phase masks. Using this filter, phase information lost in the original correlation measurements was retrieved.
We experimentally show that two-photon path-entangled states can be coherently manipulated by multi-mode interference in multi-mode waveguides. By measuring the output two-photon spatial correlation function versus the phase of the input state, we sh ow that multi-mode waveguides perform as nearly-ideal multi-port beam splitters at the quantum level, creating a large variety of entangled and separable multi-path two-photon states.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا