ترغب بنشر مسار تعليمي؟ اضغط هنا

195 - Jun-Hong An , Ye Yeo , C. H. Oh 2009
We apply the influence-functional method of Feynman and Vernon to the study of a single-mode optical field that interacts with an environment at zero temperature. Using the coherent-state formalism of the path integral, we derive a generalized master equation for the single-mode optical field. Our analysis explicitly shows how non-Markovian effects manifest in the exact decoherence dynamics for different environmental correlation time scales. Remarkably, when these are equal to or greater than the time scale for significant change in the system, the interplay between the backaction-induced coherent oscillation and the dissipative effect of the environment causes the non-Markovian effect to have a significant impact not only on the short-time behavior but also on the long-time steady-state behavior of the system.
We study the exact decoherence dynamics of the entangled squeezed state of two single-mode optical fields interacting with two independent and uncorrelated environments. We analyze in detail the non-Markovian effects on the entanglement evolution of the initially entangled squeezed state for different environmental correlation time scales. We find that the environments have dual actions on the system: backaction and dissipation. In mparticular, when the environmental correlation time scale is comparable to the time scale for significant change in the system, the backaction would counteract the dissipative effect. Interestingly, this results in the survival of some residual entanglement in the final steady state.
74 - Ye Yeo , Chang Chi Kwong 2007
Recently, Zhang {em et al.} [PRA, {bf 75}, 062102 (2007)] extended Kieus interesting work on the quantum Otto engine [PRL, {bf 93}, 140403 (2004)] by considering as working substance a bipartite quantum system $AB$ composed of subsystems $A$ and $B$. In this paper, we express the net work done $W_{AB}$ by such an engine explicitly in terms of the macroscopic bath temperatures and information theoretic quantities associated with the microscopic quantum states of the working substance. This allows us to gain insights into the dependence of positive $W_{AB}$ on the quantum properties of the states. We illustrate with a two-qubit XY chain as the working substance. Inspired by the expression, we propose a plausible formula for the work derivable from the subsystems. We show that there is a critical entanglement beyond which it is impossible to draw positive work locally from the individual subsystems while $W_{AB}$ is positive. This could be another interesting manifestation of quantum nonlocality.
308 - Chang Chi Kwong , Ye Yeo 2007
It has been shown that, for the two-qubit Heisenberg XY model, anisotropy and magnetic field may together be used to produce entanglement for any finite temperature by adjusting the external magnetic field beyond some finite critical strength. This i nteresting result arises from an analysis employing the Wootters concurrence, a computable measure of entanglement for two-qubit states. Recently, Mintert {em et al.} proposed generalizations of Wootters concurrence for multipartite states. These MKB concurrences possess a mathematical property that enables one to understand the origin of this characteristic behavior. Here, we first study the effect of anisotropy and magnetic field on the multipartite thermal entanglement of a four-qubit Heisenberg XY chain using the MKB concurrences. We show that this model exhibits characteristic behavior similar to that of the two-qubit model. In addition, we show that this can again be understood using the same mathematical property. Next, we show that the six-qubit Heisenberg XY chain possesses properties necessary for it to have the characteristic behavior too. Most importantly, it is possible to directly measure the multipartite MKB concurrences of pure states. This may provide an experimental verification of our conjecture that for a Heisenberg XY chain of any even number of qubits, it is always possible to obtain non-zero genuine multipartite entanglement at any finite temperature by applying a sufficiently large magnetic field.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا