ترغب بنشر مسار تعليمي؟ اضغط هنا

The ground state of the quantum spin system kappa-(BEDT-TTF)2Cu2(CN)3 in which antiferromagnetically-interacting S=1/2 spins are located on a nearly equilateral triangular lattice attracts considerable interest both from experimental and theoretical aspects, because a simple antiferromagnetic order may be inhibited because of the geometrical frustration and hence an exotic ground state is expected. Furthermore, recent two reports on the ground state of this system have made it further intriguing by showing completely controversial results; one indicates the gapless state and the other gapped. By utilizing microscopic probe of muSR, we have investigated its spin dynamics below 0.1 K, unveiling its microscopically phase separated ground state at zero field.
Zero field and longitudinal field muon spin relaxation measurements have been performed in optimally doped and overdoped superconductors LaFeAsO$_{1-x}$F$_x$ in order to investigate the magnetic fluctuation over a wide range of temperature and longit udinal field. We have observed no sign of magnetic fluctuation against temperature in the muons time window (10$^{-5}sim$ 10$^{-9}$s). Considering the current results and other results, i.e., spin fluctuation observed by neutron scattering, pseudogap-like behaviors by NMR and photoemission spectroscopy, it is suggested that not only the spin fluctuation but also the multiband character with several different orbital contributions at the Fermi surface may play an important role in the superconducting pairing mechanism of LaFeAsO$_{1-x}$F$_x$.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا