ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the lepton flavor violation in the supersymmetric seesaw model taking into account recent experimental improvements, especially for the Higgs boson mass measurement, direct searches of superpartners and the rare decay of B_s -> mu+ mu- at th e LHC, the neutrino mixing angle of theta_{13} at the neutrino experiments, and the search of mu -> e gamma at the MEG experiment. We obtain the latest constraints on the parameters in the supersymmetry breaking terms and study the effect on the lepton flavor violating decays of tau -> mu gamma and mu -> e gamma. In particular, we consider two kinds of assumption on the structures in the Majorana mass matrix and the neutrino Yukawa matrix. In the case of the Majorana mass matrix proportional to the unit matrix, allowing non-vanishing CP violating parameters in the neutrino Yukawa matrix, we find that the branching ratio of tau -> mu gamma can be larger than 10^{-9} within the improved experimental limit of mu -> e gamma. We also consider the neutrino Yukawa matrix that includes the mixing only in the second and third generations, and find that a larger branching ratio of tau -> mu gamma than 10^{-9} is possible with satisfying the recent constraints.
This work provides an overview on the current status of phenomenology and searches for heavy vector-like quarks, which are predicted in many models of new physics beyond the Standard Model. Searches at Tevatron and at the LHC, here listed and shortly described, have not found any evidence for new heavy fermionic states (either chiral or vector-like), and have therefore posed strong bounds on their masses: depending on specific assumptions on the interactions and on the observed final state, vector-like quarks with masses up to roughly 400-600 GeV have been excluded by all experiments. In order to be as simple and model-independent as possible, the chosen framework for the phenomenological analysis is an effective model with the addition of a vector-like quark representation (singlet, doublet or triplet under SU(2)) which couples through Yukawa interactions with all SM families. The relevance of different observables for the determination of bounds on mixing parameters is then discussed and a complete overview of possible two-body final states for every vector-like quark is provided, including their subsequent decay into SM particles. A list and short description of phenomenological analyses present in literature is also provided for reference purposes.
We derive the general structure of dimension-six derivative interactions in the N Higgs doublet models, where Higgs fields arise as pseudo Nambu-Goldstone modes of a strongly interacting sector. We show that there are several relations among the dime nsion-six operators, and therefore the number of independent operators decreases compared with models on which only SU(2)_L x U(1)_Y invariance is imposed. As an explicit example, we derive scattering amplitudes of longitudinal gauge bosons and Higgs bosons at high energy on models involving two Higgs doublets, and compare them with the amplitudes in the case of one Higgs doublet.
We study an upper bound on masses of additional scalar bosons from the electroweak precision data and theoretical constraints such as perturbative unitarity and vacuum stability in the two Higgs doublet model taking account of recent Higgs boson sear ch results. If the mass of the Standard-Model-like Higgs boson is rather heavy and is outside the allowed region by the electroweak precision data, such a discrepancy should be compensated by contributions from the additional scalar bosons. We show the upper bound on masses of the additional scalar bosons to be about 2 $(1)$ TeV for the mass of the Standard-Model-like Higgs boson to be 240 $(500)$ GeV.
Lepton flavor violation in tau and mu processes is studied in the littlest Higgs model with T-parity. We consider various asymmetries defined in polarized tau and mu decays. Correlations among branching ratios and asymmetries are shown in the followi ng lepton flavor violation processes: mu+ --> e+ gamma, mu+ --> e+ e+ e-, mu- A --> e- A (A = Al, Ti, Au and Pb), tau+ --> mu+ gamma, tau+ --> mu+ mu+ mu-, tau+ --> mu+ e+ e-, tau+ --> mu+ P (P = pi0, eta and eta), tau+ --> mu+ V (V = rho0, omega and phi), tau+ --> e+ gamma, tau+ --> e+ e+ e-, tau+ --> e+ mu+ mu-, tau+ --> e+ P, tau+ --> e+ V, tau+ --> mu+ mu+ e- and tau+ --> e+ e+ mu-. It is shown that large parity asymmetries and time-reversal asymmetries are allowed in mu+ --> e+ e+ e-. For tau lepton flavor violation processes, sizable asymmetries are possible reflecting characteristic chirality structure of lepton flavor violating interactions in this model.
The ILC physics working group is a mixture of experimentalists and theorists mainly working in Japan. It has its origin in the previous LC physics study group and has been reformed with the initiative of a JSPS Creative Scientific Research project: R esearch and Development of a Novel Detector System for the International Linear Collider. The working group is, however, formally independent of the JSPS project and is open to everybody who is interested in ILC physics. The primary task of the working group is to reexamine the ILC physics in the context of the expected LHC outcome and to further strengthen the physics case for the ILC project. The topics covered in the working group activities range from key measurements such as those of the Higgs self-coupling and the top Yukawa coupling to uncover the secrets of the electroweak symmetry breaking to various new physics scenarios like supersymmetry, large extra dimensions, and other models of terascale physics. The working group has held ten General Meetings in the period of May 2007 to June 2009 to discuss the topics mentioned above. This report ummarizes the progress made in this period and sets a milestone for future developments in ILC physics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا