ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the dynamics of a single photon pulse travels through a linear atomic chain coupled to a one-dimensional (1D) single mode photonic waveguide. We derive a time-dependent dynamical theory for this collective many-body system which allows us to study the real time evolution of the photon transport and the atomic excitations. Our analytical result is consistent with previous numerical calculations when there is only one atom. For an atomic chain, the collective interaction between the atoms mediated by the waveguide mode can significantly change the dynamics of the system. The reflectivity of a photon can be tuned by changing the ratio of coupling strength and the photon linewidth or by changing the number of atoms in the chain. The reflectivity of a single photon pulse with finite bandwidth can even approach $100%$. The spectrum of the reflected and transmitted photon can also be significantly different from the single atom case. Many interesting physical phenomena can occur in this system such as the photonic bandgap effects, quantum entanglement generation, Fano-like interference, and superradiant effects. For engineering, this system may serve as a single photon frequency filter, single photon modulation and may find important applications in quantum information.
We simulate evolution of cometary H II regions based on several champagne flow models and bow shock models, and calculate the profiles of the [Ne II] fine-structure line at $12.81mu m$, the $H30alpha$ recombination line and the [Ne III] fine-structur e line at $15.55mu m$ for these models at different inclinations of $0^o, 30^o textrm{and} 60^o$. We find that the profiles in the bow shock models are generally different from those in the champagne flow models, but the profiles in the bow shock with lower stellar velocity ($leq5km s^{-1}$) are similar to those in the champagne flow models. In champagne flow models, both the velocity of peak flux and the flux weighted central velocities of all three lines are pointing outward from molecular clouds. In bow shock models, the directions of these velocities rely on the speed of stars. They have the similar motion in high stellar speed case but opposite directions in low stellar speed case. We notice that the line profiles from the slit along the symmetrical axis of the projected 2D image of these models are useful for distinguishing bow shock models and champagne flow models. It is also confirmed by the calculation that the flux weighted central velocity and the line luminosity of the [Ne III] line can be estimated from the [Ne II] line and the $H30alpha$ line.
Dealing with hardware and software faults is an important problem as parallel and distributed systems scale to millions of processing cores and wide area networks. Traditional methods for dealing with faults include checkpoint-restart, active replica s, and deterministic replay. Each of these techniques has associated resource overheads and constraints. In this paper, we propose an alternate approach to dealing with faults, based on input augmentation. This approach, which is an algorithmic analog of erasure coded storage, applies a minimally modified algorithm on the augmented input to produce an augmented output. The execution of such an algorithm proceeds completely oblivious to faults in the system. In the event of one or more faults, the real solution is recovered using a rapid reconstruction method from the augmented output. We demonstrate this approach on the problem of solving sparse linear systems using a conjugate gradient solver. We present input augmentation and output recovery techniques. Through detailed experiments, we show that our approach can be made oblivious to a large number of faults with low computational overhead. Specifically, we demonstrate cases where a single fault can be corrected with less than 10% overhead in time, and even in extreme cases (fault rates of 20%), our approach is able to compute a solution with reasonable overhead. These results represent a significant improvement over the state of the art.
201 - Li-Gang Wang , Shi-Yao Zhu , 2013
We investigate the Goos-H{a}nchen (GH) shifts of partially coherent fields (PCFs) by using the theory of coherence. We derive a formal expression for the GH shifts of PCFs in terms of Mercers expansion, and then clearly demonstrate the dependence of the GH shift of each mode of PCFs on spatial coherence and beam width. We discuss the effect of spatial coherence on the resultant GH shifts, especially for the cases near the critical angles, such as totally reflection angle.
148 - Li-Gang Wang , Shi-Yao Zhu , 2013
This comment is to show that our simulation data, based on our theory and method in Ref. [J. Phys. B 41, 055401 (2008)], are also in agreement with the experimental data presented for $D_{p}-D_{s}$ in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012) ]. We also demonstrate how to show the effect of spatial coherence on the GH shifts in this comment, therefore we disagree with the claims in Ref. [Phys. Rev. Lett. textbf{109}, 213901 (2012)].
In terms of operator, the two complementary quantities, the predictability and visibility, are reinvestigated in a two-way interferometer. One Hermitian operator and one non-Hermitian operator (composed of two Hermitian operators) are introduced for the predictability and visibility, respectively. The predictability and visibility can not be measured exactly simultaneously, due to the non-commutation between the two operators. The sum of the variances of the predictability and visibility (the total variance), is used to measure the uncertainty, which is linked to the complementarity relation through the equation, $(delta_P)^2+(delta_Vf)^2+P^2+V^2=2$ . This new description for the predictability and visibility connects the complementarity and the uncertainty relations, although neither of them can be derived directly from the other.
343 - Li-Gang Wang , Shi-Yao Zhu 2008
In this paper, we investigate the propagation of two-mode spatially Gaussian-entangled quantum light fields passing through the turbulence atmosphere. From the propagation formula of the two-mode wave function in the position representation, we have derived the analytical expressions for the fidelity, purity and logarithmic negativity (entanglement) of the resulting quantum state after the long-distance atmospheric transportation. Based on the derived formulae, the effects of the atmospheric turbulences on the evolutions of quantum properties of the resulting two-mode quantum state are discussed in detail under different input parameters of the initial two-mode quantum state. The results show that the maximal distributing distance of quantum entanglement is strongly dependent on the atmospheric conditions: when the atmospheric turbulence becomes stronger and stronger, the maximal distance becomes shorter and shorter, and both the fidelity and purity decrease quicker and quicker as functions of propagating distances. Under a certain atmospheric condition, with the increasing of the input entanglement of the initial two-mode spatially Gaussian-entangled quantum state, the maximal distributing distance for preserving the entanglement gradually increases and always has a saturated (upper) limitation, and both the evolutions of the fidelity and purity are affected by the input parameters of the initial two-mode quantum state, Finally the optimal parameters of the input two-mode quantum state with the fixed input entanglement are discussed in order to obtain the optimal transfer distribution of the quantum entanglement over a long distance under a certain atmosphere. Our theoretical results are very helpful for building the distribution of the quantum entanglement via free-space atmosphere link.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا