ترغب بنشر مسار تعليمي؟ اضغط هنا

Many promising building blocks of future electronic technology - including non-stoichiometric compounds, strongly correlated oxides, and strained or patterned films - are inhomogeneous on the nanometer length scale. Exploiting the inhomogeneity of su ch materials to design next-generation nanodevices requires a band structure probe with nanoscale spatial resolution. To address this demand, we report the first simultaneous observation and quantitative reconciliation of two candidate probes - Landau level spectroscopy and quasiparticle interference imaging - which we employ here to reconstruct the multi-component surface state band structure of the topological semimetal antimony(Sb). We thus establish the technique of band structure tunneling microscopy (BSTM), whose unique advantages include nanoscale access to non-rigid band structure deformation, empty state dispersion, and magnetic field dependent states. We use BSTM to elucidate the relationship between bulk conductivity and surface state robustness in topological materials, and to quantify essential metrics for spintronics applications.
Topological insulators host spin-polarized surface states which robustly span the band gap and hold promise for novel applications. Recent theoretical predictions have suggested that topologically protected surface states may similarly span the hybri dization gap in some strongly correlated heavy fermion materials, particularly SmB6. However, the process by which the Sm 4f electrons hybridize with the 5d electrons on the surface of SmB6, and the expected Fermi-level gap in the density of states out of which the predicted topological surface states must arise, have not been directly measured. We use scanning tunneling microscopy to conduct the first atomic resolution spectroscopic study of the cleaved surface of SmB6, and to reveal a robust hybridization gap which universally spans the Fermi level on four distinct surface morphologies despite shifts in the f band energy. Using a cotunneling model, we separate the density of states of the hybridized bands from which the predicted topological surface states must be disentangled. On all surfaces we observe residual spectral weight spanning the hybridization gap down to the lowest T, which is consistent with a topological surface state.
106 - Yang He , Yi Yin , M. Zech 2013
The unclear relationship between cuprate superconductivity and the pseudogap state remains an impediment to understanding the high transition temperature (Tc) superconducting mechanism. Here we employ magnetic-field-dependent scanning tunneling micro scopy to provide phase-sensitive proof that d-wave superconductivity coexists with the pseudogap on the antinodal Fermi surface of an overdoped cuprate. Furthermore, by tracking the hole doping (p) dependence of the quasiparticle interference pattern within a single Bi-based cuprate family, we observe a Fermi surface reconstruction slightly below optimal doping, indicating a zero-field quantum phase transition in notable proximity to the maximum superconducting Tc. Surprisingly, this major reorganization of the systems underlying electronic structure has no effect on the smoothly evolving pseudogap.
The competition between proximate electronic phases produces a complex phenomenology in strongly correlated systems. In particular, fluctuations associated with periodic charge or spin modulations, known as density waves, may lead to exotic supercond uctivity in several correlated materials. However, density waves have been difficult to isolate in the presence of chemical disorder, and the suspected causal link between competing density wave orders and high temperature superconductivity is not understood. Here we use scanning tunneling microscopy to image a previously unknown unidirectional (stripe) charge density wave (CDW) smoothly interfacing with the familiar tri-directional (triangular) CDW on the surface of the stoichiometric superconductor NbSe$_2$. Our low temperature measurements rule out thermal fluctuations, and point to local strain as the tuning parameter for this quantum phase transition. We use this discovery to resolve two longstanding debates about the anomalous spectroscopic gap and the role of Fermi surface nesting in the CDW phase of NbSe$_2$. Our results highlight the importance of local strain in governing phase transitions and competing phenomena, and suggest a new direction of inquiry for resolving similarly longstanding debates in cuprate superconductors and other strongly correlated materials.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا