ترغب بنشر مسار تعليمي؟ اضغط هنا

The pure quantum correlations totally independent of the classical coherence of light have been experimentally demonstrated. By measuring the visibility of the interference fringes and the correlation variances of amplitude and phase quadratures betw een a pair of bright twin optical beams with different frequencies produced from a non-degenerate optical parametric oscillator, we found that when classical interference became worse even vanished, the quadrature quantum correlations were not influenced, completely. The presented experiment obviously shows the quantum correlations of light do not necessarily imply the classical coherence.
The dependence of quantum correlation of twin beams on the pump finesse of an optical parametric oscillator is studied with a semi-classical analysis. It is found that the phase-sum correlation of the output signal and idler beams from an optical par ametric oscillator operating above threshold depends on the finesse of the pump field when the spurious pump phase noise generated inside the optical cavity and the excess noise of the input pump field are involved in the Langevin equations. The theoretical calculations can explain the previously experimental results, quantitatively.
The influence of the phase fluctuation of the pump laser on the phase-correlation between the signal and idler modes of the output fields from as non-degenerate optical parametric oscillator operating above oscillation threshold was experimentally in vestigated. The noise spectra of the intensity-difference and the phase-sum of the entangled optical beams were measured with a pair of unbalanced fiber Match-Zehnder interferometers specifically designed. The experimental results proved the previously theoretical prediction and are in reasonable agreement with the calculation based on semiclassical theory involving the phase fluctuation of pump laser.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا