ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce a simple model of dynamical supersymmetry breaking. It is like a supersymmetric version of a Nambu--Jona-Lasinio model with a spin one composite. The simplest version of the model as presented here has a single chiral superfield (multipl et) with a four-superfield interaction. The latter has the structure of the square of the superfield magnitude square. A vacuum condensate of the latter is illustrated to develop giving rise to supersymmetry breaking with a soft mass term for the superfield. We report also the effective theory picture with a real superfield composite, illustrating the matching effective potential analysis and the vacuum solution conditions for the components. The nature of its fermionic part as the Goldstone mode is presented. Phenomenological application to the supersymmetric standard model is plausible.
We study the theoretical features in relation to dynamical mass generation and symmetry breaking for the recently proposed holomorphic supersymmetric Nambu--Jona-Lasinio model. The basic model has two different chiral superfields (multiplets) with a strongly coupled dimension five four-superfield interaction. In addition to the possibility of generation of Dirac mass between the pair established earlier, we show here the new option of generation of Majorana masses for each chiral superfield. We also give a first look at what condition may prefer Dirac over Majorana mass, illustrating that a split in the soft supersymmetry breaking masses is crucial. In particular, in the limit where one of the soft masses vanish, we show that generation of the Majorana mass is no longer an option, while the Dirac mass generation survives well. The latter is sensitive mostly to the average of the two soft masses. The result has positive implication on the application of the model framework towards dynamical electroweak symmetry breaking with Higgs superfields as composites.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا