ترغب بنشر مسار تعليمي؟ اضغط هنا

We discuss how internal rotation with fixed angular frequency can affect the solitons in the baby Skyrme model in which the global O(3) symmetry is broken to the SO(2). Two particular choices of the potential term are considered, the old potential an d the new double vacuum potential, We do not impose any assumptions about the symmetry on the fields. Our results confirm existence of two types of instabilities determined by the relation between the mass parameter of the potential and the angular frequency.
The problem of constructing internally rotating solitons of fixed angular frequency $omega$ in the Faddeev-Skyrme model is reformulated as a variational problem for an energy-like functional, called pseudoenergy, which depends parametrically on $omeg a$. This problem is solved numerically using a gradient descent method, without imposing any spatial symmetries on the solitons, and the dependence of the solitons energy on $omega$, and on their conserved total isospin $J$, studied. It is found that, generically, the shape of a soliton is independent of $omega$, and that its size grows monotonically with $omega$. A simple elastic rod model of time-dependent hopfions is developed which, despite having only one free parameter, accounts well for most of the numerical results.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا