ترغب بنشر مسار تعليمي؟ اضغط هنا

Topological insulators (TIs) have attracted immense interest because they host helical surface states. Protected by time-reversal symmetry, they are robust to non-magnetic disorder. When superconductivity is induced in these helical states, they are predicted to emulate p-wave pairing symmetry, with Majorana states bound to vortices. Majorana bound states possess non-Abelian exchange statistics which can be probed through interferometry. Here, we take a significant step towards Majorana interferometry by observing pronounced Fabry-Perot oscillations in a TI sandwiched between a superconducting and normal lead. For energies below the superconducting gap, we observe a doubling in the frequency of the oscillations, arising from the additional phase accumulated from Andreev reflection. When a magnetic field is applied perpendicular to the TI surface, a number of very sharp and gate-tunable conductance peaks appear at or near zero energy, which has consequences for interpreting spectroscopic probes of Majorana fermions. Our results demonstrate that TIs are a promising platform for exploring phase-coherent transport in a solid-state system.
The growth and elementary properties of p-type Bi2Se3 single crystals are reported. Based on a hypothesis about the defect chemistry of Bi2Se3, the p-type behavior has been induced through low level substitutions (1 percent or less) of Ca for Bi. Sca nning tunneling microscopy is employed to image the defects and establish their charge. Tunneling and angle resolved photoemission spectra show that the Fermi level has been lowered into the valence band by about 400 meV in Bi1.98Ca0.02Se3 relative to the n-type material. p-type single crystals with ab plane Seebeck coefficients of +180 microVK-1 at room temperature are reported. These crystals show a giant anomalous peak in the Seebeck coefficient at low temperatures, reaching +120 microVK-1 at 7 K, giving them a high thermoelectric power factor at low temperatures. In addition to its interesting thermoelectric properties, p-type Bi2Se3 is of substantial interest for studies of technologies and phenomena proposed for topological insulators.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا