ترغب بنشر مسار تعليمي؟ اضغط هنا

We demonstrate the usability of mm-wavelength imaging data obtained from the APEX-SZ bolometer array to derive the radial temperature profile of the hot intra-cluster gas out to radius r_500 and beyond. The goal is to study the physical properties of the intra-cluster gas by using a non-parametric de-projection method that is, aside from the assumption of spherical symmetry, free from modeling bias. We use publicly available X-ray imaging data from the XMM-Newton observatory and our Sunyaev-Zeldovich Effect (SZE) imaging data from the APEX-SZ experiment at 150 GHz to de-project the density and temperature profiles for the relaxed cluster Abell 2204. We derive the gas density, temperature and entropy profiles assuming spherical symmetry, and obtain the total mass profile under the assumption of hydrostatic equilibrium. For comparison with X-ray spectroscopic temperature models, a re-analysis of the recent Chandra observation is done with the latest calibration updates. Using the non-parametric modeling we demonstrate a decrease of gas temperature in the cluster outskirts, and also measure the gas entropy profile. These results are obtained for the first time independently of X-ray spectroscopy, using SZE and X-ray imaging data. The contribution of the SZE systematic uncertainties in measuring T_e at large radii is shown to be small compared to the Chandra systematic spectroscopic errors. The upper limit on M_200 derived from the non-parametric method is consistent with the NFW model prediction from weak lensing analysis.
Context: Measurements of intracluster gas temperatures out to large radii are important for the use of clusters for precision cosmology and for studies of cluster physics. Previous attempts to measure robust temperatures at cluster virial radii faile d. Aims: The goal of this work is to measure the temperature profile of the very relaxed galaxy cluster Abell 2204 out to large radii, possibly reaching the virial radius. Methods: Taking advantage of its low particle background due to its low-Earth orbit, Suzaku data are used to measure the outer temperature profile of Abell 2204. These data are combined with Chandra and XMM-Newton data of the same cluster in order to make the connection to the inner regions, unresolved by Suzaku, and to determine the smearing due to Suzakus PSF. Results: The temperature profile of Abell 2204 is determined from 10 kpc to 1800 kpc, close to an estimate of r200 (the approximation to the virial radius). The temperature rises steeply from below 4 keV in the very center up to more than 8 keV in the intermediate range and then decreases again to about 4 keV at the largest radii. Varying the measured particle background normalization artificially by +-10 percent does not change the results significantly. Predictions for outer temperature profiles based on hydrodynamic simulations show good agreement. In particular, we find the observed temperature profile to be slightly steeper but consistent with a drop of a factor of 0.6 from 0.3 r200 to r200, as predicted by simulations. Conclusions: Temperature measurements up to the virial radius seem feasible with Suzaku, when a careful analysis of the different background components and the effects of the PSF is performed. The result obtained here indicates that numerical simulations capture the intracluster gas physics well in cluster outskirts.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا