ترغب بنشر مسار تعليمي؟ اضغط هنا

197 - C.-L. Zou , F.-W. Sun , Y.-F. Xiao 2010
Plasmon mode in a silver nanowire is theoretically studied when the nanowire is placed on or near a silica substrate. It is found that the substrate has much influence on the plasmon mode. For the nanowire on the substrate, the plasmon (hybrid) mode possesses not only a long propagation length but also an ultrasmall mode area. From the experimental point of view, this cavity-free structure holds a great potential to study a strong coherent interaction between the plasmon mode and single quantum system (for example, quantum dots) embedded in the substrate.
Single air-suspended carbon nanotubes (length 2 - 5 microns) exhibit high optical quantum efficiency (7 - 20%) for resonant pumping at low intensities. Under ultrafast excitation, the photoluminescence dramatically saturates for very low injected exc iton numbers (2 to 6 excitons per pulse per SWCNT). This PL clamping is attributed to highly efficient exciton-exciton annihilation over micron length scales. Stochastic modeling of exciton dynamics and femtosecond excitation correlation spectroscopy allow determination of nanotube absorption (2 - 6%) and exciton lifetime (85 +- 20 ps).
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا