ترغب بنشر مسار تعليمي؟ اضغط هنا

149 - A R Field , D Dunai , Y-c Ghim 2013
Observations of ion-scale (k_y*rho_i <= 1) density turbulence of relative amplitude dn_e/n_e <= 0.2% are available on the Mega Amp Spherical Tokamak (MAST) using a 2D (8 radial x 4 poloidal channel) imaging Beam Emission Spectroscopy (BES) diagnostic . Spatial and temporal characteristics of this turbulence, i.e., amplitudes, correlation times, radial and perpendicular correlation lengths and apparent phase velocities of the density contours, are determined by means of correlation analysis. For a low-density, L-mode discharge with strong equilibrium flow shear exhibiting an internal transport barrier (ITB) in the ion channel, the observed turbulence characteristics are compared with synthetic density turbulence data generated from global, non-linear, gyro-kinetic simulations using the particle-in-cell (PIC) code NEMORB. This validation exercise highlights the need to include increasingly sophisticated physics, e.g., kinetic treatment of trapped electrons, equilibrium flow shear and collisions, to reproduce most of the characteristics of the observed turbulence. Even so, significant discrepancies remain: an underprediction by the simulations of the turbulence amplituide and heat flux at plasma periphery and the finding that the correlation times of the numerically simulated turbulence are typically two orders of magnitude longer than those measured in MAST. Comparison of these correlation times with various linear timescales suggests that, while the measured turbulence is strong and may be `critically balanced, the simulated turbulence is weak.
Experimental data from the Mega Amp Spherical Tokamak (MAST) is used to show that the inverse gradient scale length of the ion temperature R/LTi (normalized to the major radius R) has its strongest local correlation with the rotational shear and the pitch angle of the magnetic field (or, equivalently, an inverse correlation with q/{epsilon}, the safety factor/the inverse aspect ratio). Furthermore, R/LTi is found to be inversely correlated with the gyro-Bohm-normalized local turbulent heat flux estimated from the density fluctuation level measured using a 2D Beam Emission Spectroscopy (BES) diagnostic. These results can be explained in terms of the conjecture that the turbulent system adjusts to keep R/LTi close to a certain critical value (marginal for the excitation of turbulence) determined by local equilibrium parameters (although not necessarily by linear stability).
Beam Emission Spectroscopy (BES) measurements of ion-scale density fluctuations in the MAST tokamak are used to show that the turbulence correlation time, the drift time associated with ion temperature or density gradients, the particle (ion) streami ng time along the magnetic field and the magnetic drift time are consistently comparable, suggesting a critically balanced turbulence determined by the local equilibrium. The resulting scalings of the poloidal and radial correlation lengths are derived and tested. The nonlinear time inferred from the density fluctuations is longer than the other times; its ratio to the correlation time scales as $ u_{*i}^{-0.8pm0.1}$, where $ u_{*i}=$ ion collision rate/streaming rate. This is consistent with turbulent decorrelation being controlled by a zonal component, invisible to the BES, with an amplitude exceeding the drift waves by $sim u_{*i}^{-0.8}$.
Weakly collisional Ar-O2 electronegative plasmas are investigated in a dc multidipole chamber. An electronegative core and an electropositive halo are observed. The density ratio of negative ions to electrons ({alpha}) in the nondrifting bulk is foun d to be 0.43. The profile of {alpha} is found using both the phase velocity of ion acoustic waves and the drift velocity of positive ions determined by laser induced fluorescence. The experiment shows that negative ions are in Boltzmann equilibrium with a temperature of 0.06 pm 0.02 eV. Double layers are not found separating the electronegative core and the electropositive halo.
The Beam Emission Spectroscopy (BES) turbulence diagnostic on MAST is to be upgraded in June 2010 from a 1D trial system to a 2D imaging system (8 radial times 4 poloidal channels) based on a newly developed APD array camera. The spatial resolution o f the new system is calculated in terms of the point spread function (PSF) to account for the effects of field-line curvature, observation geometry, the finite lifetime of the excited state of the beam atoms, and beam attenuation and divergence. It is found that the radial spatial resolution is ~ 2-3 cm and the poloidal spatial resolution ~ 1-5 cm depending on the radial viewing location. The absolute number of detected photons is also calculated, hence the photon noise level can be determined
The mean motion of turbulent patterns detected by a two-dimensional (2D) beam emission spectroscopy (BES) diagnostic on the Mega Amp Spherical Tokamak (MAST) is determined using a cross-correlation time delay (CCTD) method. Statistical reliability of the method is studied by means of synthetic data analysis. The experimental measurements on MAST indicate that the apparent mean poloidal motion of the turbulent density patterns in the lab frame arises because the longest correlation direction of the patterns (parallel to the local background magnetic fields) is not parallel to the direction of the fastest mean plasma flows (usually toroidal when strong neutral beam injection is present). The experimental measurements are consistent with the mean motion of plasma being toroidal. The sum of all other contributions (mean poloidal plasma flow, phase velocity of the density patterns in the plasma frame, non-linear effects, etc.) to the apparent mean poloidal velocity of the density patterns is found to be negligible. These results hold in all investigated L-mode, H-mode and internal transport barrier (ITB) discharges. The one exception is a high-poloidal-beta (the ratio of the plasma pressure to the poloidal magnetic field energy density) discharge, where a large magnetic island exists. In this case BES detects very little motion. This effect is currently theoretically unexplained.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا