ترغب بنشر مسار تعليمي؟ اضغط هنا

We report temperature-dependent surface x-ray scattering studies of the orbital ordered surface in La$_{0.5}$Sr$_{1.5}$MnO$_4$. We find that the interfacial width of the electronic order grows as the bulk ordering temperature is approached from below , though the bulk correlation length remains unchanged. Close to the transition, the surface is so rough that there is no well-defined electronic surface, despite the presence of bulk electronic order, that is the electronic surface has melted. Above the bulk transition, finite-sized isotropic fluctuations of orbital order are observed, with a correlation length equal to that of the electronic surfaces in-plane correlation length at the transition temperature.
Structural study of orbital-ordered manganite thin films has been conducted using synchrotron radiation, and a ground state electronic phase diagram is made. The lattice parameters of four manganite thin films, Nd0.5Sr0.5MnO3 (NSMO) or Pr0.5Sr0.5MnO3 (PSMO) on (011) surfaces of SrTiO3 (STO) or [(LaAlO3){0.3}(SrAl0.5Ta0.5O3){0.7}] (LSAT), were measured as a function of temperature. The result shows, as expected based on previous knowledge of bulk materials, that the films resistivity is closely related to their structures. Observed superlattice reflections indicate that NSMO thin films have an antiferro-orbital-ordered phase as their low-temperature phase while PSMO film on LSAT has a ferro-orbital-ordered phase, and that on STO has no orbital-ordered phase. A metallic ground state was observed only in films having a narrow region of A-site ion radius, while larger ions favor ferro-orbital-ordered structure and smaller ions stabilize antiferro-orbital-ordered structure. The key to the orbital-ordering transition in (011) film is found to be the in-plane displacement along [0-1 1] direction.
We report the first observation of `orbital truncation rods -- the scattering arising from the termination of bulk orbital order at the surface of a crystal. The x-ray measurements, performed on a cleaved, single-layered perovskite, La0.5Sr1.5MnO4, r eveal that while the crystallographic surface is atomically smooth, the orbital `surface is much rougher, with an r.m.s. deviation from the average `surface of ~0.7nm. The temperature dependence of this scattering shows evidence of a surface-induced second order transition.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا