ترغب بنشر مسار تعليمي؟ اضغط هنا

323 - Y. W. Wu , M. Sato , M. J. Reid 2014
We report measurements of parallaxes and proper motions of ten high-mass star-forming regions in the Sagittarius spiral arm of the Milky Way as part of the BeSSeL Survey with the VLBA. Combining these results with eight others from the literature, we investigated the structure and kinematics of the arm between Galactocentric azimuth around -2 and 65 deg. We found that the spiral pitch angle is 7.3 +- 1.5 deg; the arms half-width, defined as the rms deviation from the fitted spiral, is around 0.2 kpc; and the nearest portion of the Sagittarius arm is 1.4 +- 0.2 kpc from the Sun. Unlike for adjacent spiral arms, we found no evidence for significant peculiar motions of sources in the Sagittarius arm opposite to Galactic rotation.
77 - Y. W. Wu , Y. Xu , J. D. Pandian 2010
To investigate whether distinctions exist between low and high-luminosity Class II 6.7-GHz methanol masers, we have undertaken multi-line mapping observations of various molecular lines, including the NH3(1,1), (2,2), (3,3), (4,4) and 12CO(1-0) trans itions, towards a sample of 9 low-luminosity 6.7-GHz masers, and 12CO (1-0) observations towards a sample of 8 high-luminosity 6.7-GHz masers, for which we already had NH3 spectral line data. Emission in the NH3 (1,1), (2,2) and (3,3) transitions was detected in 8 out of 9 low-luminosity maser sources, in which 14 cores were identified. We derive densities, column densities, temperatures, core sizes and masses of both low and high-luminosity maser regions. Comparative analysis of the physical quantities reveals marked distinctions between the low-luminosity and high-luminosity groups: in general, cores associated with high-luminosity 6.7-GHz masers are larger and more massive than those traced by low-luminosity 6.7-GHz masers; regions traced by the high-luminosity masers have larger column densities but lower densities than those of the low-luminosity maser regions. Further, strong correlations between 6.7-GHz maser luminosity and NH3(1,1) and (2,2) line widths are found, indicating that internal motions in high-luminosity maser regions are more energetic than those in low-luminosity maser regions. A 12CO (1-0) outflow analysis also shows distinctions in that outflows associated with high-luminosity masers have wider line wings and larger sizes than those associated with low-luminosity masers.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا