ترغب بنشر مسار تعليمي؟ اضغط هنا

335 - Z.-Q. Cheng , Y. Shao , 2014
There is a remarkable correlation between the spin periods of the accreting neutron stars in Be/X-ray binaries (BeXBs) and their orbital periods . Recently Knigge et al. (2011) showed that the distribution of the spin periods contains two distinct su bpopulations peaked at $sim 10$ s and $sim 200$ s respectively, and suggested that they may be related to two types of supernovae for the formation of the neutron stars, i.e., core-collapse and electron-capture supernovae. Here we propose that the bimodal spin period distribution is likely to be ascribed to different accretion modes of the neutron stars in BeXBs. When the neutron star tends to capture material from the warped, outer part of the Be star disk and experiences giant outbursts, a radiatively-cooling dominated disk is formed around the neutron star, which spins up the neutron star, and is responsible for the short period subpopulation. In BeXBs that are dominated by normal outbursts or persistent, the accretion flow is advection-dominated or quasi-spherical. The spin-up process is accordingly inefficient, leading to longer periods of the neuron stars. The potential relation between the subpopulations and the supernova mechanisms is also discussed.
We calculate the density of states (DOS) and the Mulliken population of the diamond and the co-doped diamonds with different concentrations of lithium (Li) and phosphorus (P) by the method of the density functional theory, and analyze the bonding sit uations of the Li-P co-doped diamond thin films and the impacts of the Li-P co-doping on the diamond conductivities. The results show that the Li-P atoms can promote the split of the diamond energy band near the Fermi level, and improve the electron conductivities of the Li-P co-doped diamond thin films, or even make the Li-P co-doped diamond from semiconductor to conductor. The effect of Li-P co-doping concentration on the orbital charge distributions, bond lengths and bond populations is analyzed. The Li atom may promote the split of the energy band near the Fermi level as well as may favorably regulate the diamond lattice distortion and expansion caused by the P atom.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا