ترغب بنشر مسار تعليمي؟ اضغط هنا

We have performed simultaneous measurements of magnetic chirality by using polarized neutrons and electric polarization along the b-axis of single crystals of YMn$^{4+}$(Mn$_{1-x}$Ga$_{x}$)$^{3+}$O$_{5}$ with $x=0.047$ and 0.12, in which nonmagnetic Ga-ions dilute Mn$^{3+}$ spins. The $x=0.047$ sample exhibits high-temperature incommensurate (HT-ICM), commensurate (CM), and low-temperature incommensurate (LT-ICM) magnetic phases in order of decreasing temperature, whereas the $x=0.12$ sample exhibits only HT-ICM and LT-ICM phases. Here, the CM and LT-ICM phases are ferroelectric and weak-ferroelectric, respectively. Measurements conducted under zero field heating after various field-cooling conditions evidence that the microscopic mechanisms of the spin-driven ferroelectricity in the CM and LT-ICM phases are different: the magnetic chirality of Mn$^{4+}$ cycloidal spins plays a dominant role in the LT-ICM phase, whereas the magnetic exchange striction by the Mn$^{4+}$-Mn$^{3+}$ chain plays a dominant role in the CM phase. The polarization of YMn$_{2}$O$_{5}$ flips upon CM to LT-ICM phase transition because the ferroelectricity driven by the magnetic chirality and the exchange striction provides opposite directions of polarization.
Neutron spectra in high-energy region between 1 and 100-MeV in the shield configuration of the anti-proton target station and a 120-GeV proton beam at Fermi National Accelerator Laboratory (Fermilab) were determined using the reaction rate data obtai ned with the multi-foil activation method. Two kinds of methods were employed for the determination of neutron spectra: one is the fitting method which is newly developed in this work, another is the unfolding method with SAND-II code. The calculations were performed using the PHITS. From the comparison between the calculated and experimental neutron spectra, it concluded that the PHITS can be used for shielding design of high-energy proton accelerators.
We have studied the electronic structure of the molecular ferromagnet $beta$-Mn phthalocyanine ($beta$-MnPc) in a polycrystalline form, which has been reported to show ferromagnetism at T$<$8.6 K, by x-ray absorption spectroscopy (XAS) and x-ray magn etic circular dichroism (XMCD). From the experimental results and subsequent cluster-model calculation, we find that the ferromagnetic Mn ion in $beta$-MnPc is largely in the $^4$$E$$_g$ ground state arising from the ($e$$_{g}$)$^3$($b$$_{2g}$)$^1$($a$$_{1g}$)$^1$ [($d_{xz,yz}$)$^3$($d_{xy}$)$^1$($d_{z^{2}}$)$^1$] configuration of the Mn$^{2+}$ state. Considering that the highest occupied molecular orbital (HOMO) of MnPc with the $^4$$E$$_g$ ground state originates from the $a$$_{1g}$ orbital of the Mn$^{2+}$ ion, it is proposed that $a$$_{1g}$-$a$$_{1g}$ exchange coupling via the $pi$ orbitals of the phthalocyanine ring plays a crucial role in the ferromagnetism of $beta$-MnPc.
We have studied magnetism in Ti_[1-x]Co_xO_[2-delta] thin films with various x and delta by soft x-ray magnetic circular dichroism (XMCD) measurements at the Co L_[2,3] absorption edges. The estimated ferromagnetic moment by XMCD was 0.15-0.24 mubeta /Co in the surface, while in the bulk it was 0.82-2.25 mubeta/Co, which is in the same range as the saturation magnetization of 1.0-1.5 mubeta/Co. Theseresults suggest that the intrinsic origin of the erromagnetism. The smaller moment of Co atom at surface is an indication of a magnetically dead layer of a few nm thick at the surface of the thin films.
We have studied the electronic structure of Zn$_{0.9}$Fe$_{0.1}$O nano-particles, which have been reported to show ferromagnetism at room temperature, by x-ray photoemission spectroscopy (XPS), resonant photoemission spectroscopy (RPES), x-ray absorp tion spectroscopy (XAS) and x-ray magnetic circular dichroism (XMCD). From the experimental and cluster-model calculation results, we find that Fe atoms are predominantly in the Fe$^{3+}$ ionic state with mixture of a small amount of Fe$^{2+}$ and that Fe$^{3+}$ ions are dominant in the surface region of the nano-particles. It is shown that the room temperature ferromagnetism in the Zn$_{0.9}$Fe$_{0.1}$O nano-particles is primarily originated from the antiferromagnetic coupling between unequal amounts of Fe$^{3+}$ ions occupying two sets of nonequivalent positions in the region of the XMCD probing depth of $sim$ 2-3 nm.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا