ترغب بنشر مسار تعليمي؟ اضغط هنا

We determine the composition of intrinsic as well as extrinsic contributions to the anomalous Hall effect (AHE) in the isoelectronic L1o FePd and FePt alloys. We show that the AHE signal in our 30 nm thick epitaxially deposited films of FePd is mainl y due to extrinsic side-jump, while in the epitaxial FePt films of the same thickness and degree of order the intrinsic contribution is dominating over the extrinsic mechanisms of the AHE. We relate this crossover to the difference in spin-orbit strength of Pt and Pd atoms and suggest that this phenomenon can be used for tuning the origins of the AHE in complex alloys.
We report on the implementation of the Wannier Functions (WFs) formalism within the full-potential linearized augmented plane wave method (FLAPW), suitable for bulk, film and one-dimensional geometries. The details of the implementation, as well as r esults for the metallic SrVO3, ferroelectric BaTiO3 grown on SrTiO3, covalently bonded graphene and a one-dimensional Pt-chain are given. We discuss the effect of spin-orbit coupling on the Wannier Functions for the cases of SrVO3 and platinum. The dependency of the WFs on the choice of the localized trial orbitals as well as the difference between the maximally localized and first-guess WFs are discussed. Our results on SrVO3 and BaTiO3, e.g. the ferroelectric polarization of BaTiO3, are compared to results published elsewhere and found to be in excellent agreement.
Based on first-principles density functional theory calculations we explore electronic and magnetic properties of experimentally producible sandwiches and infinite wires made of repeating benzene molecules and transition-metal atoms of V, Nb, and Ta. We describe the bonding mechanism in the molecules and in particular concentrate on the origin of magnetism in these structures. We find that all the considered systems have sizable magnetic moments and ferromagnetic spin-ordering, with the single exception of the V3-Bz4 molecule. By including the spin-orbit coupling into our calculations we determine the easy and hard axes of the magnetic moment, the strength of the uniaxial magnetic anisotropy energy (MAE), relevant for the thermal stability of magnetic orientation, and the change of the electronic structure with respect to the direction of the magnetic moment, important for spin-transport properties. While for the V-based compounds the values of the MAE are only of the order of 0.05-0.5 meV per metal atom, increasing the spin-orbit strength by substituting V with heavier Nb and Ta allows to achieve an increase in anisotropy values by one to two orders of magnitude. The rigid stability of magnetism in these compounds together with the strong ferromagnetic ordering makes them attractive candidates for spin-polarized transport applications. For a Nb-benzene infinite wire the occurrence of ballistic anisotropic magnetoresistance is demonstrated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا