ترغب بنشر مسار تعليمي؟ اضغط هنا

105 - Z. F. Xu , Y. Kawaguchi , L. You 2012
We develop a symmetry classification scheme to find ground states of pseudo spin-1/2, spin-1, and spin-2 spin-orbit coupled spinor Bose-Einstein condensates, and show that as the SO(2) symmetry of simultaneous spin and space rotations is broken into discrete cyclic groups, various types of lattice structures emerge in the absence of a lattice potential, examples include two different kagaome lattices for pseudo spin-1/2 condensates and a nematic vortex lattice in which uniaxial and biaxial spin textures align alternatively for spin-2 condensates. For the pseudo spin-1/2 system, although mean-field states always break time-reversal symmetry, there exists a time-reversal invariant many-body ground state, which is fragmented and expected to be observed in a micro-condensate.
We present a theory of spinor superfluidity in a two-species heteronuclear ultracold fermionic atomic gas consisting of arbitrary half-integer spin and one-half spin atoms. In particular, we focus on the magnetism of the superfluid phase and determin e the possible phases in the absence of a magnetic field. Our work demonstrates similarities between heteronuclear fermionic superfluids and spinor Bose-Einstein condensates at the mean-field level. Possible experimental situations are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا