ترغب بنشر مسار تعليمي؟ اضغط هنا

The electrical resistivity (Rxx) and Hall resistivity (Rxy) of LaFeAsO1-xFx have been measured over a wide fluorine doping range 0 =< x =< 0.14 using 60 T pulsed magnets. While the superconducting phase diagram (Tc, x) displays the classic dome-shape d structure, we find that the resistive upper critical field (Hc2) increases monotonically with decreasing fluorine concentration, with the largest Hc2 >= 75 T for x = 0.05. This is reminiscent of the composition dependence in high-Tc cuprates and might correlate with opening of a pseudo-gap in the underdoped region. Further, the temperature dependence of Hc2(T) for superconducting samples can be understood in terms of multi-band superconductivity. Rxy data for non-superconducting samples show non-linear field dependence, which is also consistent with a multi-carrier scenario.
218 - Y. Kohama , Y. Kamihara , S. Riggs 2008
The electrical resistivity and Hall coefficient of LaFeAsO0.95F0.05 polycrystalline samples were measured in pulsed magnetic fields up to m0H = 60 T from room temperature to 1.5 K. The resistance of the normal state shows a negative temperature coeff icient (dr/dT < 0) below 70 K for this composition, indicating insulating ground state in underdoped LaFeAsO system in contrast to heavily doped compound. The charge carrier density obtained from Hall effect can be described as constant plus a thermally activated term with an energy gap DE = 630 K. Upper critical field, Hc2, estimated from resistivity measurements, exceeds 75 T with zero-field Tc = 26.3 K, suggesting an unconventional nature for superconductivity.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا