ترغب بنشر مسار تعليمي؟ اضغط هنا

59 - M. Takayama , P. R. Wood , Y. Ita 2015
Long-term $JHK$ light curves have recently become available for large numbers of the more luminous stars in the SMC. We have used these $JHK$ light curves, along with OGLE $V$ and $I$ light curves, to examine the variability of a sample of luminous r ed giants in the SMC which show prominent long secondary periods (LSPs). The origin of the LSPs is currently unknown. In oxygen-rich stars, we found that while most broad band colours (e.g. $V-I$) get redder when an oxygen-rich star dims during its LSP cycle, the $J$-$K$ colour barely changes and sometimes becomes bluer. We interpret the $J$-$K$ colour changes as being due to increasing water vapour absorption during declining light caused by the development a layer of dense cool gas above the photosphere. This result and previous observations which indicate the development of a chromosphere between minimum to maximum light suggest that the LSP phenomenon is associated with the ejection of matter from the stellar photosphere near the beginning of light decline. We explore the possibility that broadband light variations from the optical to the near-IR regions can be explained by either dust absorption by ejected matter or large spots on a rotating stellar surface. However, neither model is capable of explaining the observed light variations in a variety of colour-magnitude diagrams. We conclude that some other mechanism is responsible for the light variations associated with LSPs in red giants.
56 - Y. Ita , M. Matsuura(3 2010
Results: We found that the (B-V) v.s. (V-S9W) color-color diagram is useful to identify the stars with infrared excess emerged from circumstellar envelopes/disks. Be stars with infrared excess are well separated from other types of stars in this diag ram. Whereas (J-L18W) v.s. (S9W-L18W) diagram is a powerful tool to classify several object-types. Carbon-rich asymptotic giant branch (AGB) stars and OH/IR stars form distinct sequences in this color-color diagram. Young stellar objects (YSOs), pre-main sequence (PMS) stars, post-AGB stars and planetary nebulae (PNe) have largest mid-infrared color-excess, and can be identified in infrared catalog. Finally, we plot L18W v.s. (S9W-L18W) color-magnitude diagram, using the AKARI data together with Hipparcos parallaxes. This diagram can be used to identify low-mass YSOs, as well as AGB stars. We found that this diagram is comparable to the [24] vs ([8.0]-[24]) diagram of Large Magellanic Cloud sources using the Spitzer Space Telescope data. Our understanding of Galactic objects will be used to interpret color-magnitude diagram of stellar populations in nearby galaxies which Spitzer Space Telescope has observed. Conclusions: Our study of the AKARI color-color and color-magnitude will be used to explore properties of unknown objects in future. In addition, our analysis highlights a future key project to understand stellar evolution with circumstellar envelope, once the forthcoming astronometrical data with GAIA are available.
38 - Y. Ita , M. Matsuura (3 2010
--Results-- We found that the (B-V) v.s. (V-S9W) color-color diagram is useful to identify the stars with infrared excess emerged from circumstellar envelopes/disks. Be stars with infrared excess are well separated from other types of stars in this d iagram. Whereas (J-L18W) v.s. (S9W-L18W) diagram is a powerful tool to classify several object-types. Carbon-rich asymptotic giant branch (AGB) stars and OH/IR stars form distinct sequences in this color-color diagram. Young stellar objects (YSOs), pre-main sequence (PMS) stars, post-AGB stars and planetary nebulae (PNe) have largest mid-infrared color-excess, and can be identified in infrared catalog. Finally, we plot L18W v.s. (S9W-L18W) color-magnitude diagram, using the AKARI data together with Hipparcos parallaxes. This diagram can be used to identify low-mass YSOs, as well as AGB stars. We found that this diagram is comparable to the [24] vs ([8.0]-[24]) diagram of Large Magellanic Cloud sources using the Spitzer Space Telescope data. Our understanding of Galactic objects will be used to interpret color-magnitude diagram of stellar populations in nearby galaxies which Spitzer Space Telescope has observed. --Conclusions-- Our study of the AKARI color-color and color-magnitude will be used to explore properties of unknown objects in future. In addition, our analysis highlights a future key project to understand stellar evolution with circumstellar envelope, once the forthcoming astronometrical data with GAIA are available.
55 - S. Deguchi , T. Fujii , Y. Ita 2007
We have searched for the SiO J=1--0 v= 1 and 2 maser lines at ~ 43 GHz in 277 2MASS/MSX/IRAS sources off the Galactic plane (|b|> 3 deg), which resulted in 119 (112 new) detections. Among the new detections, are two very faint objects with MSX 12 mic ron flux densities below 2 Jy. These are likely to be O-rich AGB-stars associated with dwarf-galaxy tidal tails. The sample also includes medium bright MSX objects at moderately high Galactic latitudes (3 deg<|b|<5 deg) and in the IRAS gap at higher latitudes. A signature of a warp of the inner Galactic disk is found for a disk subsample. This warp appears relatively strongly in the area of 0<l<45 deg and 3<|b|<5 deg. We also found a group of stars that does not follow to the Galactic rotation. This feature appears in the Galactic disk at l~ 27 deg, and extends more than 15 deg in Galactic latitude, like a stream of tidal debris from a dwarf galaxy.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا