ترغب بنشر مسار تعليمي؟ اضغط هنا

100 - Y. D. Liu , H. W. Wang , Y. G. Ma 2015
The elastic resonance scattering protons decayed from $^{11}$B to the ground state of $^{10}$Be were measured using the thick-target technique in inverse kinematics at the Heavy Ion Research Facility in Lanzhou (HIRFL). The obtained excitation functi ons were well described by a multichannel R-matrix procedure under the kinematics process assumption of resonant elastic scattering. The excitation energy of the resonant states ranges from 13.0 to 17.0 MeV, and their resonant parameters such as the resonant energy E$_{x}$, the spin-parity J$^pi$, and the proton-decay partial width $Gamma_p$ were determined from R-matrix fits to the data. Two of these states around E$_{x}$ = 14.55 MeV [J$^pi$ = (3/2$^+$, 5/2$^+$), $Gamma_p$ = 475 $pm$ 80 keV] and E$_{x}$ = 14.74 MeV [J$^pi$ = 3/2$^-$, $Gamma_p$ = 830 $pm$ 145 keV], and a probably populated state at E$_x$ = 16.18 MeV [J$^pi$ =(1/2$^-$, 3/2$^-$), $Gamma_p$ $<$ 60 keV], are respectively assigned to the well-known states in $^{11}$B at 14.34 MeV, 15.29 MeV, and 16.43 MeV. The isospin of these three states were previously determined to be T = 3/2, but discrepancies exist in widths and energies due to the current counting statistics and energy resolution. We have compared these states with previous measurements, and the observation of the possibly populated resonance is discussed.
The shear viscosity of hot nuclear matter is investigated by using the mean free path method within the framework of IQMD model. Finite size nuclear sources at different density and temperature are initialized based on the Fermi-Dirac distribution. T he results show that shear viscosity to entropy density ratio decreases with the increase of temperature and tends toward a constant value for $rhosimrho_0$, which is consistent with the previous studies on nuclear matter formed during heavy-ion collisions. At $rhosimfrac{1}{2}rho_0$, a minimum of $eta/s$ is seen at around $T=10$ MeV and a maximum of the multiplicity of intermediate mass fragment ($M_{text{IMF}}$) is also observed at the same temperature which is an indication of the liquid-gas phase transition.
106 - C. L. Zhou , Y. G. Ma , D. Q. Fang 2012
The ratio of the shear viscosity ($eta$) to entropy density ($s$) for the intermediate energy heavy-ion collisions has been calculated by using the Green-Kubo method in the framework of the quantum molecular dynamics model. The theoretical curve of $ eta/s$ as a function of the incident energy for the head-on Au+Au collisions displays that a minimum region of $eta/s$ has been approached at higher incident energies, where the minimum $eta/s$ value is about 7 times Kovtun-Son- Starinets (KSS) bound (1/4$pi$). We argue that the onset of minimum $eta/s$ region at higher incident energies corresponds to the nuclear liquid gas phase transition in nuclear multifragmentation.
80 - S. X. Li , D. Q. Fang , Y. G. Ma 2011
The ratio of shear viscosity ($eta$) to entropy density ($s$) for an equilibrated system is investigated in intermediate energy heavy ion collisions below 100$A$ MeV within the framework of the Boltzmann-Uehling-Uhlenbeck (BUU) model . After the coll ision system almost reaches a local equilibration, the temperature, pressure and energy density are obtained from the phase space information and {$eta/s$} is calculated using the Green-Kubo formulas. The results show that {$eta$}/$s$ decreases with incident energy and tend towards a smaller value around 0.5, which is not so drastically different from the BNL Relativistic Heavy Ion Collider results in the present model.
69 - D. Q. Fang , Y. G. Ma , X. Z. Cai 2010
We study the relation between neutron removal cross section ($sigma_{-N}$) and neutron skin thickness for finite neutron rich nuclei using the statistical abrasion ablation (SAA) model. Different sizes of neutron skin are obtained by adjusting the di ffuseness parameter of neutrons in the Fermi distribution. It is demonstrated that there is a good linear correlation between $sigma_{-N}$ and the neutron skin thickness for neutron rich nuclei. Further analysis suggests that the relative increase of neutron removal cross section could be used as a quantitative measure for the neutron skin thickness in neutron rich nuclei.
292 - G. H. Liu , Y. G. Ma , X. Z. Cai 2008
Hard photon emitted from energetic heavy ion collisions is of very interesting since it does not experience the late-stage nuclear interaction, therefore it is useful to explore the early-stage information of matter phase. In this work, we have prese nted a first calculation of azimuthal asymmetry, characterized by directed transverse flow parameter $F$ and elliptic asymmetry coefficient $v_2$, for proton-neutron bremsstrahlung hard photons in intermediate energy heavy-ion collisions. The positive $F$ and negative $v_2$ of direct photons are illustrated and they seem to be anti-correlated to the corresponding free protons flow.
478 - F. Jin , Y. G. Ma , G. L. Ma 2007
Baryon-strangeness correlation (C$_{BS}$) has been investigated with a multi-phase transport model (AMPT) in $^{197}$Au + $^{197}$Au collisions at $sqrt{s_{NN}}$ = 200 GeV. The centrality dependence of C$_{BS}$ is presented within the model, from par tonic phase to hadronic matter. We find that the system still reserve partial predicted signatures of C$_{BS}$ after parton coalescence. But after hadronic rescattering, the predicted signatures will be obliterated completely. So it seems that both coalescence hadronization process and hadronic rescattering are responsible for the disappearance of the C$_{BS}$ signatures.
61 - T. Z. Yan , Y. G. Ma , X. Z. Cai 2007
Anisotropic flows ($v_1$, $v_2$, $v_3$ and $v_4$) of light fragments up till the mass number 4 as a function of rapidity have been studied for 25 MeV/nucleon $^{40}$Ca + $^{40}$Ca at large impact parameters by Quantum Molecular Dynamics model. A phen omenological scaling behavior of rapidity dependent flow parameters $v_n$ (n = 1, 2, 3 and 4) has been found as a function of mass number plus a constant term, which may arise from the interplay of collective and random motions. In addition, $v_4/{v_2}^2$ keeps almost independent of rapidity and remains a rough constant of 1/2 for all light fragments.
230 - S. Zhang , G. L. Ma , Y. G. Ma 2007
The transverse momentum and pseudorapidity dependences of partonic {`it{Mach-like}} shock wave have been studied by using a multi-phase transport model (AMPT) with both partonic and hadronic interactions. The splitting parameter $D$, i.e. half distan ce between two splitting peaks on away side in di-hadron azimuthal angular ($Deltaphi$) correlations, slightly increases with the transverse momentum of associated hadrons ($p^{assoc}_T$), which is consistent with preliminary experimental trend, owing to different interaction-lengths/numbers between wave partons and medium in strong parton cascade. On the other hand, the splitting parameter $D$ as a function of pseudorapidity of associated hadrons ($eta^{assoc}$), keeps flat in mid-pseudorapidity region and rapidly drops in high-pseudorapidity region, which is as a result of different violent degrees of jet-medium interactions in the medium that has different energy densities in the longitudinal direction. It is proposed that the research on the properties of {`it{Mach-like}} correlation can shed light on the knowledge of both partonic and hadronic interactions at RHIC.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا