ترغب بنشر مسار تعليمي؟ اضغط هنا

We study the electronic structure of an ordered array of poly(para-phenylene) chains produced by surface-catalyzed dehalogenative polymerization of 1,4-dibromobenzene on copper (110). The quantization of unoccupied molecular states is measured as a f unction of oligomer length by scanning tunneling spectroscopy, with Fermi level crossings observed for chains longer than ten phenyl rings. Angle-resolved photoelectron spectroscopy reveals a graphene-like quasi one-dimensional valence band as well as a direct gap of 1.15 eV, as the conduction band is partially filled through adsorption on the surface. Tight-binding modelling and ab initio density functional theory calculations lead to a full description of the organic band-structure, including the k dispersion, the gap size and electron charge transfer mechanisms which drive the system into metallic behaviour. Therefore the entire band structure of a carbon-based conducting wire has been fully determined. This may be taken as a fingerprint of {pi}-conjugation of surface organic frameworks.
We report on new LEED, STM and ARPES studies of alkali/Si(111) previously established as having a Mott insulating ground state at surface. The observation of a strong temperature dependent Franck-Condon broadening of the surface band together with th e novel $sqrt{3}timessqrt{3}to2(sqrt{3}timessqrt{3})$ charge and lattice ordering below 270 K evidence a surface charge density wave (SCDW) in the strong e-ph coupling limit ($gapprox8$). Both the adiabatic ratio $hbaromega_0/tapprox0.8$ and the effective pairing energy $V_{eff}=U-2ghbaromega_0approx-800$ $meV$ are consistent with the possible formation of a bi-polaronic insulating phase consisting of alternating doubly-occupied/unoccupied dangling bonds as expected in the Holstein-Hubbard model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا