ترغب بنشر مسار تعليمي؟ اضغط هنا

Context. The APEX Telescope Large Area Survey of the Galaxy (ATLASGAL) is the first systematic survey of the inner Galactic plane in the sub-millimetre. The observations were carried out with the Large APEX Bolometer Camera (LABOCA), an array of 295 bolometers observing at 870 microns (345 GHz). Aims. Here we present a first version of the compact source catalogue extracted from this survey. This catalogue provides an unbiased database of dusty clumps in the inner Galaxy. Methods. The construction of this catalogue was made using the source extraction routine SExtractor. We have cross-associated the obtained sources with the IRAS and MSX catalogues, in order to constrain their nature. Results. We have detected 6639 compact sources in the range from 330 < l < 21 degrees and |b| < 1.5 degrees. The catalogue has a 99% completeness for sources with a peak flux above 6 sigma, which corresponds to a flux density of ~0.4 Jy/beam. The parameters extracted for sources with peak fluxes below the 6 sigma completeness threshold should be used with caution. Tests on simulated data find the uncertainty in the flux measurement to be ~12%, however, in more complex regions the flux values can be overestimated by a factor of 2 due to the additional background emission. Using a search radius of 30 we found that 40% of ATLASGAL compact sources are associated with an IRAS or MSX point source, but, ~50% are found to be associated with MSX 21 microns fluxes above the local background level, which is probably a lower limit to the actual number of sources associated with star formation. Conclusions. Although infrared emission is found towards the majority of the clumps detected, this catalogue is still likely to include a significant number of clumps that are devoid of star formation activity and therefore excellent candidates for objects in the coldest, earliest stages of (high-mass) star formation.
(Abridged) Studying continuum emission from interstellar dust is essential to locating and characterizing the highest density regions in the interstellar medium. In particular, the early stages of massive star formation remain poorly understood. Our goal is to produce a large-scale, systematic database of massive pre- and proto-stellar clumps in the Galaxy, to understand how and under what conditions star formation takes place. A well characterized sample of star-forming sites will deliver an evolutionary sequence and a mass function of high-mass, star-forming clumps. This systematic survey at submm wavelengths also represents a preparatory work for Herschel and ALMA. The APEX telescope is ideally located to observe the inner Milky Way. The Large APEX Bolometer Camera (LABOCA) is a 295-element bolometer array observing at 870 microns, with a beam size of 19. Taking advantage of its large field of view (11.4) and excellent sensitivity, we started an unbiased survey of the Galactic Plane, with a noise level of 50-70 mJy/beam: the APEX Telescope Large Area Survey of the Galaxy (ATLASGAL). As a first step, we covered 95 sq. deg. These data reveal 6000 compact sources brighter than 0.25 Jy, as well as extended structures, many of them filamentary. About two thirds of the compact sources have no bright infrared counterpart, and some of them are likely to correspond to the precursors of (high-mass) proto-stars or proto-clusters. Other compact sources harbor hot cores, compact HII regions or young embedded clusters. Assuming a typical distance of 5 kpc, most sources are clumps smaller than 1 pc with masses from a few 10 to a few 100 M_sun. In this introductory paper, we show preliminary results from these ongoing observations, and discuss the perspectives of the survey.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا