ترغب بنشر مسار تعليمي؟ اضغط هنا

We report a Keldysh-like model for the electron transition rate in dielectrics under an intense circularly polarized laser. We assume a parabolic two-band system and the Houston function as the time-dependent wave function of the valence and conducti on bands. Our formula reproduces the experimental result for the ratio of the excitation rate between linear and circular polarizations for $alpha$-quartz. This formula can be easily introduced into simulations of nanofabrication using an intense circularly polarized laser.
We apply the coupled dynamics of time-dependent density functional theory and Maxwell equations to the interaction of intense laser pulses with crystalline silicon. As a function of electromagnetic field intensity, we see several regions in the respo nse. At the lowest intensities, the pulse is reflected and transmitted in accord with the dielectric response, and the characteristics of the energy deposition is consistent with two-photon absorption. The absorption process begins to deviate from that at laser intensities ~ 10^13 W/cm^2, where the energy deposited is of the order of 1 eV per atom. Changes in the reflectivity are seen as a function of intensity. When it passes a threshold of about 3 times 1012 W/cm2, there is a small decrease. At higher intensities, above 2 times 10^13 W/cm^2, the reflectivity increases strongly. This behavior can be understood qualitatively in a model treating the excited electron-hole pairs as a plasma.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا