ترغب بنشر مسار تعليمي؟ اضغط هنا

We show that oscillation death as a specific type of oscillation suppression, which implies symmetry breaking, can be controlled by introducing time-delayed coupling. In particular, we demonstrate that time delay influences the stability of an inhomo geneous steady state, providing the opportunity to modulate the threshold for oscillation death. Additionally, we find a novel type of oscillation death representing a secondary bifurcation of an inhomogeneous steady state.
This paper studies the effects of a time-delayed feedback control on the appearance and development of spatiotemporal patterns in a reaction-diffusion system. Different types of control schemes are investigated, including single-species, diagonal, an d mixed control. This approach helps to unveil different dynamical regimes, which arise from chaotic state or from traveling waves. In the case of spatiotemporal chaos, the control can either stabilize uniform steady states or lead to bistability between a trivial steady state and a propagating traveling wave. Furthermore, when the basic state is a stable traveling pulse, the control is able to advance stationary Turing patterns or yield the above-mentioned bistability regime. In each case, the stability boundary is found in the parameter space of the control strength and the time delay, and numerical simulations suggest that diagonal control fails to control the spatiotemporal chaos.
We present an analysis of time-delayed feedback control used to stabilize an unstable steady state of a neutral delay differential equation. Stability of the controlled system is addressed by studying the eigenvalue spectrum of a corresponding charac teristic equation with two time delays. An analytic expression for the stabilizing control strength is derived in terms of original system parameters and the time delay of the control. Theoretical and numerical results show that the interplay between the control strength and two time delays provides a number of regions in the parameter space where the time-delayed feedback control can successfully stabilize an otherwise unstable steady state.
Spectral properties and transition to instability in neutral delay differential equations are investigated in the limit of large delay. An approximation of the upper boundary of stability is found and compared to an analytically derived exact stabili ty boundary. The approximate and exact stability borders agree quite well for the large time delay, and the inclusion of a time-delayed velocity feedback improves this agreement for small delays. Theoretical results are complemented by a numerically computed spectrum of the corresponding characteristic equations.
An epidemic model with distributed time delay is derived to describe the dynamics of infectious diseases with varying immunity. It is shown that solutions are always positive, and the model has at most two steady states: disease-free and endemic. It is proved that the disease-free equilibrium is locally and globally asymptotically stable. When an endemic equilibrium exists, it is possible to analytically prove its local and global stability using Lyapunov functionals. Bifurcation analysis is performed using DDE-BIFTOOL and traceDDE to investigate different dynamical regimes in the model using numerical continuation for different values of system parameters and different integral kernels.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا