ترغب بنشر مسار تعليمي؟ اضغط هنا

153 - C.W. Xie , H. K. Yuan , Y. Liu 2021
This year, Liu textit{et al}. [Phys. Rev. B textbf{104}, L041405 (2021)] proposed a new class of topological phonons (TPs; i.e., one-nodal surface (NS) phonons), which provides an effective route for realizing one-NSs in phonon systems. In this work, based on first-principles calculations and symmetry analysis, we extended the types of NS phonons from one- to three-NS phonons. The existence of three-NS phonons (with NS states on the $k_{i}$ = $pi$ ($i$ = $x$, $y$, $z$) planes in the three-dimensional Brillouin zone (BZ)) is enforced by the combination of two-fold screw symmetry and time reversal symmetry. We screened all 230 space groups (SGs) and found nine candidate groups (with the SG numbers (Nos.) 19, 61, 62, 92, 96, 198, 205, 212, and 213) hosting three-NS phonons. Interestingly, with the help of first-principles calculations, we identified $P2_{1}$2$_{1}$2$_{1}$-type YCuS$_{2}$ (SG No. 19), $Pbca$-type NiAs$_{2}$ (SG No. 61), $Pnma$-type SrZrO$_{2}$ (SG No. 62), $P4_{1}$2$_{1}$2-type LiAlO$_{2}$ (SG No. 92), $P4_{3}$2$_{1}$2-type ZnP$_{2}$ (SG No. 96), $P2_{1}$3-type NiSbSe (SG No. 198), $Pabar{3}$-type As$_{2}$Pt (SG No. 205), $P4_{3}$32-type BaSi$_{2}$ (SG No. 212), and $P4_{1}$32-type CsBe$_{2}$F$_{5}$ (SG No. 213) as realistic materials hosting three-NS phonons. The results of our presented study enrich the class of NS states in phonon systems and provide concrete guidance for searching for three-NS phonons and singular Weyl point phonons in realistic materials.
In this ISSI-supported series of studies on magnetic helicity in the Sun, we systematically implement different magnetic helicity calculation methods on high-quality solar magnetogram observations. We apply finite-volume, discrete flux tube (in parti cular, connectivity-based) and flux-integration methods to data from Hinodes Solar Optical Telescope. The target is NOAA active region 10930 during a ~1.5 day interval in December 2006 that included a major eruptive flare (SOL2006-12-13T02:14X3.4). Finite-volume and connectivity-based methods yield instantaneous budgets of the coronal magnetic helicity, while the flux-integration methods allow an estimate of the accumulated helicity injected through the photosphere. The objectives of our work are twofold: A cross-validation of methods, as well as an interpretation of the complex events leading to the eruption. To the first objective, we find (i) strong agreement among the finite-volume methods, (ii) a moderate agreement between the connectivity-based and finite-volume methods, (iii) an excellent agreement between the flux-integration methods, and (iv) an overall agreement between finite-volume and flux-integration based estimates regarding the predominant sign and magnitude of the helicity. To the second objective, we are confident that the photospheric helicity flux significantly contributed to the coronal helicity budget, and that a right-handed structure erupted from a predominantly left-handed corona during the X-class flare. Overall, we find that the use of different methods to estimate the (accumulated) coronal helicity may be necessary in order to draw a complete picture of an active-region corona, given the careful handling of identified data (preparation) issues, which otherwise would mislead the event analysis and interpretation.
77 - Y. Liu , F.J. Chaparro , Z. Gray 2021
Porosity variations in tubular scaffolds are critical to reproducible, sophisticated applications of electrospun fibers in biomedicine. Established laser micrometry techniques produced ~14,000 datapoints enabling thickness and porosity plots versus b oth the azimuthal (Phi) and axial (Z) directions following cylindrical mandrel deposition. These 3D datasets could then be unrolled into maps revealing variations in thickness and porosity versus 0, -5, and -15 kV collector bias. As bias increases, thinner, more focused depositions occur. Simultaneous decreases in net porosity versus bias (91.1% 0kV > 83.4% -5kV > 80.2% -15 kV) are sensible, but significant changes in the distribution were unexpected. Surprisingly, at 0 kV, extensive mesoscale surface roughness is evident. Optical profilometry revealed unique features ~1600-420 mum in size, standing ~210 mum above the surrounding surface. These shrink to only ~440-150 mum in size and ~30 mum higher at -5 kV bias and disappear entirely at -15 kV. Scanning electron microscopy (SEM) resolved these into novel, localized domains containing tightly aligned fibers oriented parallel to the mandrel axis. Unexpectedly, we also observed substantial orientation along the mandrel axis. By modifying classical bending instability models to incorporate cylindrical electric fields, simulation revealed that horizontal components in the modified electric field alter bending loop shape, causing the observed alignment. This provides a new, easily utilized tool enabling facile, efficient tuning of orientation.
141 - R. Zhou , H. Lin , Y. Liu 2021
Generating and manipulating Dirac points in artificial atomic crystals has received attention especially in photonic systems due to their ease of implementation. In this paper, we propose a two-dimensional photonic crystal made of a Kekule lattice of pure dielectrics, where the internal rotation of cylindrical pillars induces optical Dirac-degeneracy breaking. Our calculated dispersion reveals that the synchronized rotation reverses bands and switches parity as well so as to induce a topological phase transition. Our simulation demonstrates that such topologically protected edge states can achieve robust transmission in defect waveguides under deformation, and therefore provides a pragmatically tunable scheme to achieve reconfigurable topological phases.
137 - Y. Y. Liu , H. S. Fu , J. B. Cao 2021
We present a statistical analysis for the characteristics and spatial evolution of the interplanetary discontinuities (IDs) in the solar wind, from 0.13 to 0.9 au, by using the Parker Solar Probe measurements on Orbits 4 and 5. 3948 IDs have been col lected, including 2511 rotational discontinuities (RDs) and 557 tangential discontinuities (TDs), with the remnant unidentified. The statistical results show that (1) the ID occurrence rate decreases from 200 events/day at 0.13 au to 1 events/day at 0.9 au, following a spatial scaling r-2.00, (2) the RD to TD ratio decreases quickly with the heliocentric distance, from 8 at r<0.3 au to 1 at r>0.4 au, (3) the magnetic field tends to rotate across the IDs, 45{deg} for TDs and 30{deg} for RDs in the pristine solar wind within 0.3 au, (4) a special subgroup of RDs exist within 0.3 au, characterized by small field rotation angles and parallel or antiparallel propagations to the background magnetic fields, (5) the TD thicknesses normalized by local ion inertial lengths (di) show no clear spatial scaling and generally range from 5 to 35 di, and the normalized RD thicknesses follow r-1.09 spatial scaling, (6) the outward (anti-sunward) propagating RDs predominate in all RDs, with the propagation speeds in the plasma rest frame proportional to r-1.03. This work could improve our understandings for the ID characteristics and evolutions and shed light on the study of the turbulent environment in the pristine solar wind.
Impurity pinning has long been discussed to have a profound effect on the dynamics of an incommensurate charge density wave (CDW), which would otherwise slide through the lattice without resistance. Here we visualize the impurity pinning evolution of the CDW in ZrTe3 using the variable temperature scanning tunneling microscopy (STM). At low temperatures, we observe a quasi-1D incommensurate CDW modulation moderately correlated to the impurity positions, indicating a weak impurity pinning. As we raise the sample temperature, the CDW modulation gets progressively weakened and distorted, while the correlation with the impurities becomes stronger. Above the CDW transition temperature, short-range modulations persist with the phase almost all pinned by impurities. The evolution from weak to strong impurity pinning through the CDW transition can be understood as a result of losing phase rigidity.
We report Coulomb blockade transport studies of InAs nanowires grown with epitaxial superconducting Al and ferromagnetic insulator EuS on overlapping facets. By comparing experimental results to a theoretical model, we associate cotunneling features in even-odd bias spectra with spin-polarized Andreev levels, indicating that spin splitting exceeding the induced superconducting gap at zero applied magnetic field. Energies of the polarized subgap states can be tuned on either side of zero by electrostatic gates.
The discovery of topological order has revolutionized the understanding of quantum matter in modern physics and provided the theoretical foundation for many quantum error correcting codes. Realizing topologically ordered states has proven to be extre mely challenging in both condensed matter and synthetic quantum systems. Here, we prepare the ground state of the toric code Hamiltonian using an efficient quantum circuit on a superconducting quantum processor. We measure a topological entanglement entropy near the expected value of $ln2$, and simulate anyon interferometry to extract the braiding statistics of the emergent excitations. Furthermore, we investigate key aspects of the surface code, including logical state injection and the decay of the non-local order parameter. Our results demonstrate the potential for quantum processors to provide key insights into topological quantum matter and quantum error correction.
134 - X. Gao , Y. Liu , X. Liu 2021
A novel framework of intelligent reflecting surface (IRS)-aided multiple-input single-output (MISO) non-orthogonal multiple access (NOMA) network is proposed, where a base station (BS) serves multiple clusters with unfixed number of users in each clu ster. The goal is to maximize the sum rate of all users by jointly optimizing the passive beamforming vector at the IRS, decoding order, power allocation coefficient vector and number of clusters, subject to the rate requirements of users. In order to tackle the formulated problem, a three-step approach is proposed. More particularly, a long short-term memory (LSTM) based algorithm is first adopted for predicting the mobility of users. Secondly, a K-means based Gaussian mixture model (K-GMM) algorithm is proposed for user clustering. Thirdly, a deep Q-network (DQN) based algorithm is invoked for jointly determining the phase shift matrix and power allocation policy. Simulation results are provided for demonstrating that the proposed algorithm outperforms the benchmarks, while the throughput gain of 35% can be achieved by invoking NOMA technique instead of orthogonal multiple access (OMA).
Spins in SiGe quantum dots are promising candidates for quantum bits but are also challenging due to the valley degeneracy which could potentially cause spin decoherence and weak spin-orbital coupling. In this work we demonstrate that valley states c an serve as an asset that enables two-axis control of a singlet-triplet qubit formed in a double quantum dot without the application of a magnetic field gradient. We measure the valley spectrum in each dot using magnetic field spectroscopy of Zeeman split triplet states. The interdot transition between ground states requires an electron to flip between valleys, which in turn provides a g-factor difference $Delta g$ between two dots. This $Delta g$ serves as an effective magnetic field gradient and allows for qubit rotations with a rate that increases linearly with an external magnetic field. We measured several interdot transitions and found that this valley introduced $Delta g$ is universal and electrically tunable. This could potentially simplify scaling up quantum information processing in the SiGe platform by removing the requirement for magnetic field gradients which are difficult to engineer.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا