ترغب بنشر مسار تعليمي؟ اضغط هنا

380 - Jin-Lei Tan , Xun-Wei Xu , Jing Lu 2021
We study the coherent transport of one or two photons in a 1D waveguide chirally coupled to a nonlinear resonator. Analytic solutions of the one-photon and two-photon scattering is derived. Although the resonator acts as a non-reciprocal phase shifte r, light transmission is reciprocal at one-photon level. However, the forward and reverse transmitted probabilities for two photons incident from either the left side or the right side of the nonlinear resonator are nonreciprocal due to the energy redistribution of the two-photon bound state. Hence, the nonlinear resonator acts as an optical diode at two-photon level.
We propose a theoretical scheme to realize nonreciprocal transition in a multi-level atomic system with cyclic four-level transition. The effective transition between two indirectly coupled energy levels become nonreciprocal, when they are coupled to two auxiliary levels simultaneously, by four strong driving fields with the total phase serving as a synthetic magnetic flux and breaking the time reversal symmetry of the system. The nonreciprocal transition can lead to the elimination of a spectral line in the spontaneous emission spectrum, which provide us a simple approach to measure the phenomenon in steady state. This work provides a feasible approach to observe nonreciprocal transition in a wide range of multi-level systems, including natural atoms with parity symmetry.
We investigate corner states in a photonic two-dimensional (2D) Su-Schrieffer-Heeger (SSH) model on a square lattice with zero gauge flux. By considering intracelluar next-nearest-neighbor (NNN) hoppings, we discover a broad class of corner states in the 2D SSH model, and show that they are robust against certain fabrication disorders. Moreover, these corner states are located around the corners, but not at the corner points, so we refer to them as general corner states. We analytically identify that the general corner states are induced by the intracelluar NNN hoppings (long-range interactions) and split off from the edge-state bands. Our work show a simple way to induce unique corner states by the long-range interactions, and offers opportunities for designing novel photonic devices.
We propose to periodically modulate the onsite energy via two-tone drives, which can be furthermore used to engineer artificial gauge potential. As an example, we show that the fermionic ladder model penetrated with effective magnetic flux can be con structed by superconducting flux qubits using such two-tone-drive-engineered artificial gauge potential. In this superconducting system, the single-particle ground state can range from vortex phase to Meissner phase due to the competition between the interleg coupling strength and the effective magnetic flux. We also present the method to experimentally measure the chiral currents by the single-particle Rabi oscillations between adjacent qubits. In contrast to previous methods of generating artifical gauge potential, our proposal does not need the aid of auxiliary couplers and in principle remains valid only if the qubit circuit maintains enough anharmonicity. The fermionic ladder model with effective magnetic flux can also be interpreted as one-dimensional spin-orbit-coupled model, which thus lay a foundation towards the realization of quantum spin Hall effect.
201 - Xun-Wei Xu , Chong Ye , Yong Li 2019
The spontaneous emission spectrum of a multi-level atom or molecule with nonreciprocal transition is investigated. It is shown that the nonreciprocal transition can lead to the elimination of a spectral line in the spontaneous emission spectrum. As a n application, we show that nonreciprocal transition arises from the phase-related driving fields in chiral molecules with cyclic three-level transitions, and the elimination of a spectral line induced by nonreciprocal transition provides us a method to determine the enantiomeric excess for the chiral molecules without requiring the enantio-pure samples.
We study multiphoton blockade and photon-induced tunneling effects in the two-photon Jaynes-Cummings model, where a single-mode cavity field and a two-level atom are coupled via a two-photon interaction. We consider both the cavity-field-driving and atom-driving cases, and find that single-photon blockade and photon-induced tunneling effects can be observed when the cavity mode is driven, while the two-photon blockade effect appears when the atom is driven. For the atom-driving case (the two-photon transition process), we present a criterion of the correlation functions for the multiphoton blockade effect. Specifically, we show that quantum interference can enhance the photon blockade effect in the single-photon cavity-field-driving case. Our results are confirmed by analytically and numerically calculating the correlation function of the cavity-field mode. Our work has potential applications in quantum information processing and paves the way for the study of multiphoton quantum coherent devices.
113 - Xun-Wei Xu , Yong Li , Baijun Li 2019
We propose how to realize nonreciprocity for a weak input optical field via nonlinearity and synthetic magnetism. We show that the photons transmitting from a linear cavity to a nonlinear cavity (i.e., an asymmetric nonlinear optical molecule) exhibi t nonreciprocal photon blockade but no clear nonreciprocal transmission. Both nonreciprocal transmission and nonreciprocal photon blockade can be observed, when one or two auxiliary modes are coupled to the asymmetric nonlinear optical molecule to generate an artificial magnetic field. Similar method can be used to create and manipulate nonreciprocal transmission and nonreciprocal photon blockade for photons bi-directionally transport in a symmetric nonlinear optical molecule. Additionally, a photon circulator with nonreciprocal photon blockade is designed based on nonlinearity and synthetic magnetism. The combination of nonlinearity and synthetic magnetism provides us an effective way towards the realization of quantum nonreciprocal devices, e.g., nonreciprocal single-photon sources and single-photon diodes.
Stimulated emission and absorption are two fundamental processes of light-matter interaction, and the coefficients of the two processes should be equal in general. However, we will describe a generic method to realize significant difference between t he stimulated emission and absorption coefficients of two nondegenerate energy levels, which we refer to as nonreciprocal transition. As a simple implementation, a cyclic three-level atom system, comprising two nondegenerate energy levels and one auxiliary energy level, is employed to show nonreciprocal transition via a combination of synthetic magnetism and reservoir engineering. Moreover, a single-photon nonreciprocal transporter is proposed using two one dimensional semi-infinite coupled-resonator waveguides connected by an atom with nonreciprocal transition effect. Our work opens up a route to design atom-mediated nonreciprocal devices in a wide range of physical systems.
We propose a three-mode optomechanical system to realize optical nonreciprocal transmission with unidirectional amplification, where the system consists of two coupled cavities and one mechanical resonator which interacts with only one of the cavitie s. Additionally, the optical gain is introduced into the optomechanical cavity. It is found that for a strong optical input, the optical transmission coefficient can be greatly amplified in a particular direction and suppressed in the opposite direction. The expressions of the optimal transmission coefficient and the corresponding isolation ratio are given analytically. Our results pave a way to design high-quality nonreciprocal devices based on optomechanical systems.
Quantum blockade and entanglement play important roles in quantum information and quantum communication as quantum blockade is an effective mechanism to generate single photons (phonons) and entanglement is a crucial resource for quantum information processing. In this work, we propose a method to generate single entangled photon-phonon pairs in a hybrid optomechanical system. We show that photon blockade, phonon blockade, and photon-phonon correlation and entanglement can be observed via the atom-photon-phonon (tripartite) interaction, under the resonant atomic driving. The correlated and entangled single photons and single phonons, i.e., single entangled photon-phonon pairs, can be generated in both the weak and strong tripartite interaction regimes. Our results may have important applications in the development of highly complex quantum networks.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا