ترغب بنشر مسار تعليمي؟ اضغط هنا

The GWAC-N is an observation network composed of multi-aperture and multi-field of view robotic optical telescopes. The main instruments are the GWAC-A. Besides, several robotic optical telescopes with narrower field of views provide fast follow-up m ulti-band capabilities to the GWAC-N. The primary scientific goal of the GWAC-N is to search for the optical counterparts of GRB that will be detected by the SVOM. The GWAC-N performs many other observing tasks including the follow-ups of ToO and both the detection and the monitoring of variable/periodic objects as well as optical transients. To handle all of those scientific cases, we designed 10 observation modes and 175 observation strategies, especially, a joint observation strategy with multiple telescopes of the GWAC-N for the follow-up of GW events. To perform these observations, we thus develop an AOM system in charge of the object management, the dynamic scheduling of the observation plan and its automatic broadcasting to the network management and finally the image management. The AOM combines the individual telescopes into a network and smoothly organizes all the associated operations. The system completely meets the requirements of the GWAC-N on all its science objectives. With its good portability, the AOM is scientifically and technically qualified for other general purposed telescope networks. As the GWAC-N extends and evolves, the AOM will greatly enhance the discovery potential for the GWAC-N. In the first paper of a series of publications, we present the scientific goals of the GWAC-N as well as the hardware, the software and the strategy setup to achieve the scientific objectives. The structure, the technical design, the implementation and performances of the AOM will be also described in details. In the end, we summarize the current status of the GWAC-N and prospect for the development plan in the near future.
70 - Yang Xu , Liping Xin , Xuhui Han 2020
GWAC will have been built an integrated FOV of 5,000 $degree^2$ and have already built 1,800 square $degree^2$. The limit magnitude of a 10-second exposure image in the moonless night is 16R. In each observation night, GWAC produces about 0.7TB of ra w data, and the data processing pipeline generates millions of single frame alerts. We describe the GWAC Data Processing and Management System (GPMS), including hardware architecture, database, detection-filtering-validation of transient candidates, data archiving, and user interfaces for the check of transient and the monitor of the system. GPMS combines general technology and software in astronomy and computer field, and use some advanced technologies such as deep learning. Practical results show that GPMS can fully meet the scientific data processing requirement of GWAC. It can online accomplish the detection, filtering and validation of millions of transient candidates, and feedback the final results to the astronomer in real-time. During the observation from October of 2018 to December of 2019, we have already found 102 transients.
The Type~Ia supernova (SN~Ia) 2017cfd in IC~0511 (redshift z = 0.01209+- 0.00016$) was discovered by the Lick Observatory Supernova Search 1.6+-0.7 d after the fitted first-light time (FFLT; 15.2 d before B-band maximum brightness). Photometric and s pectroscopic follow-up observations show that SN~2017cfd is a typical, normal SN~Ia with a peak luminosity MB ~ -19.2+-0.2 mag, Delta m15(B) = 1.16 mag, and reached a B-band maximum ~16.8 d after the FFLT. We estimate there to be moderately strong host-galaxy extinction (A_V = 0.39 +- 0.03 mag) based on MLCS2k2 fitting. The spectrum reveals a Si~II lambda 6355 velocity of ~11,200 kms at peak brightness. The analysis shows that SN~2017cfd is a very typical, normal SN Ia in nearly every aspect. SN~2017cfd was discovered very young, with multiband data taken starting 2 d after the FFLT, making it a valuable complement to the currently small sample (fewer than a dozen) of SNe~Ia with color data at such early times. We find that its intrinsic early-time (B - V)0 color evolution belongs to the blue population rather than to the distinct red population. Using the photometry, we constrain the companion star radius to be < 2.5 R_sun, thus ruling out a red-giant companion.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا