ترغب بنشر مسار تعليمي؟ اضغط هنا

In the littlest Higgs model with T-parity (LHT) the mirror quarks induce the special flavor structures and some new flavor-changing (FC) couplings which could greatly enhance the production rates of the FC processes. We in this paper study some botto m and anti-strange production processes in the LHT model at the International Linear Collider (ILC), i.e., $e^+e^-to bbar{s}$ and $gammagammato bbar{s}$. The results show that the production rates of these processes are sizeable for the favorable values of the parameters. Therefore, it is quite possible to test the LHT model or make some constrains on the relevant parameters of the LHT through the detection of these processes at the ILC.
In this paper, we systematically study the contribution of the TC2 model to the single t-quark production at the Hadron colliders, specially at the LHC. The TC2 model can contribute to the cross section of the single t-quark production in two differe nt ways. First, the existence of the top-pions and top-higgs can modify the $Wtb$ coupling via their loop contributions, and such modification can cause the correction to the cross sections of all three production modes. Our study shows that this kind of correction is negative and very small in all cases. Thus it is difficult to observe such correction even at the LHC. On the other hand, there exist the tree-level FC couplings in the TC2 model which can also contribute to the cross sections of the $tq$ and $tbar{b}$ production processes. The resonant effect can greatly enhance the cross sections of the $tq$ and $tbar{b}$ productions. The first evidence of the single t-quark production has been reported by the $D0$ collaboration and the measured cross section for the single t-quark production of $sigma(pbar{p}to tb+X,tqb+X)$ is compatible at the 10% level with the standard model prediction. Because the light top-pion can make great contribution to the $tbar{b}$ production, the top-pion mass should be very large in order to make the predicted cross section in the TC2 model be consistent with the Tevatron experiments. More detailed information about the top-pion mass and the FC couplings in the TC2 model should be obtained with the running of the LHC.
The littlest Higgs model with discrete symmetry named T-parity(LHT) is an interesting new physics model which does not suffer strong constraints from electroweak precision data. One of the important features of the LHT model is the existence of new s ource of FC interactions between the SM fermions and the mirror fermions. These FC interactions can make significant loop-level contributions to the couplings $tcV$, and furthermore enhance the cross sections of the FC single-top quark production processes. In this paper, we study some FC single-top quark production processes, $ppto tbar{c}$ and $ppto tV$, at the LHC in the LHT model. We find that the cross sections of these processes are strongly depended on the mirror quark masses. The processes $ppto tbar{c}$ and $ppto tg$ have large cross sections with heavy mirror quarks. The observation of these FC processes at the LHC is certainly the clue of new physics, and further precise measurements of the cross scetions can provide useful information about the free parameters in the LHT model, specially about the mirror quark masses.
With high luminosity and energy at the ILC and clean SM backgrounds, the top-charm production at the ILC should have powerful potential to probe new physics. The littlest Higgs model with discrete symmetry named T-parity(LHT) is one of the most promi sing new physics models. In this paper, we study the FC processes $e^+e^-(gammagamma)to tbar{c}$ at the ILC in the LHT model. Our study shows that the LHT model can make a significant contribution to these processes. When the masses of mirror quarks become large, these two processes are accessible at the ILC. So the top-charm production at the ILC provides a unique way to study the properties of the FC couplings in the LHT model and furthermore test the model.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا