ترغب بنشر مسار تعليمي؟ اضغط هنا

In the littlest Higgs model with T-parity, the new interactions between the mirror leptons and the Standard Model leptons can induce some lepton flavor violation (LFV) processes at loop level. We study the possibility of the ILC to probe the LFV prod uction processes $e^+e^-(gammagamma)rightarrow l_{i}bar{l}_{j}$. Our results show that the rates of $gammagammarightarrow l_{i}bar{l}_{j}$ can reach 1 fb in optimal cases after reasonable kinematical cuts, which implies that these processes may be observed at the ILC.
116 - Yao-Bei Liu , Xue-Lei Wang 2010
The left-right twin Higgs model predicts one neutral Higgs boson $phi_{0}$ and it acquires mass $m_{phi_{0}}sim mu_{r}$ with the $mu$ term, which can be lighter than half the SM-like Higgs boson mass in a portion of parameter space. Thus, the SM-like Higgs boson $h$ can dominantly decay into a pair of light neutral Higgs bosons especially when $m_{h}$ is below the $WW$ threshold. First, we examine the branching ratios of the SM-like Higgs boson decays and find that the new decay mode $hrightarrow phi_{0}phi_{0}$ is dominant for the case of $m_{h}>2m_{phi_{0}}$. Then we study the production via gluon fusion followed by the decay into two photons or two weak gauge bosons and found that the production rate can be significantly suppressed for some part of parameter space. Finally, we comparatively study the process $gammagammarightarrow h rightarrow bbar{b}$ at ILC in the cases of $m_{h}>2m_{phi_{0}}$ and $m_{h}<2m_{phi_{0}}$, respectively. We find that these predictions can significantly deviated from the SM predictions, e.g., the gluon-gluon fusion channel, in the cases of $m_{h}>2m_{phi_{0}}$ and $m_{h}<2m_{phi_{0}}$, can be suppressed by about 80% and 45%, respectively. Therefor, it is possible to probe the left-right twin Higgs model via these Higgs boson production processes at the LHC experiment or in the future ILC experiment.
114 - Yao-Bei Liu , Xue-Lei Wang 2010
The left-right twin Higgs(LRTH) model predicts the existence of three additional Higgs bosons: one neutral Higgs $phi^{0}$ and a pair of charged Higgs bosons $phi^{pm}$. In this paper, we studied the production of a pair of charged and neutral Higgs bosons associated with standard model gauge boson $Z$ at the ILC, i.e., $e^{+}e^{-}rightarrow Zphi^{+}phi^{-}$ and $e^{+}e^{-}rightarrow Zphi^{0}phi^{0}$. We calculate the production rate and present the distributions of the various observables, such as, the distributions of the energy and the transverse momenta of final $Z$-boson and charged Higgs boson $phi^{-}$, the differential cross section of the invariant mass of charged Higgs bosons pair, the distribution of the angle between charged Higgs bosons pair and the production angle distributions of $Z$-boson and charged Higgs boson $phi^{-}$. Our numerical results show that, for the process $e^{+}e^{-}rightarrow Zphi^{+}phi^{-}$, the production rates are at the level of $10^{-1} fb$ with reasonable parameter values. For the process of $e^{+}e^{-}rightarrow Zphi^{0}phi^{0}$, we find that the production cross section are smaller than $6times 10^{-3} fb$ in most of parameter space. However, the resonance production cross section can be significantly enhanced.
In our work: 0903.2612, we calculate the production rate of single top-Higgs boson in the TC2 model which is a modified version of the original top-technicolor model. The similar process was discussed in arXiv:hep-ph/9905347v2. The TC2 model, as we d iscussed in the introduction part remedies some shortcomings and loophole of the old version. The top-Higgs in the TC2 model is a mixture of the top-Higgs of the toptechnicolor model and that of the ETC model, thus a parameter $epsilon$ is introduced to denote the mixture. Moreover, we vary the mass range of the top-Higgs within 300 to 800 GeV while in arXiv:hep-ph/9905347v2, the mass range was taken as 200 to 400 GeV. In the work, our numerical results show that the production rate of single top-Higgs in the TC2 model is very close to that in the toptecnicolor model within the mass range of 200 to 400 GeV. This manifests that change from the original toptechnicolor model to the new TC2 version does not much affect the production rate of the top-Higgs even though the two top-Higgs in the two models are different. Beyond the 400 GeV, even the TC2 model predicts a negligible production rate at LHC. Since the phenomenological change is indeed not obvious, there is not much new to report. Even though the two models are somehow different, we believe that the result is not worth publishing. Therefore we decide to withdraw our manuscript.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا