ترغب بنشر مسار تعليمي؟ اضغط هنا

An experiment demonstrating single-pixel single-arm complementary compressive microscopic ghost imaging based on a digital micromirror device (DMD) has been performed. To solve the difficulty of projecting speckles or modulated light patterns onto ti ny biological objects, we instead focus the microscopic image onto the DMD. With this system, we have successfully obtained a magnified image of micron-sized objects illuminated by the microscopes own incandescent lamp. The image quality of our scheme is more than an order of magnitude better than that obtained by conventional compressed sensing with the same total sampling rate, and moreover, the system is robust against intensity instabilities of the light source and may be used under very weak light conditions. Since only one reflection direction of the DMD is used, the other reflection arm is left open for future infrared light sampling. This represents a big step forward toward the practical application of compressive microscopic ghost imaging in the biological and material science fields.
We present a robust imaging method based on time-correspondence imaging and normalized ghost imaging (GI) that sets two thresholds to select the reference frame exposures for image reconstruction. This double-threshold time-correspondence imaging pro tocol always gives better quality and signal-to-noise ratio than previous GI schemes, and is insensitive to surrounding noise. Moreover, only simple add and minus operations are required while less data storage space and computing time are consumed, thus faster imaging speeds are attainable. The protocol offers a general approach applicable to all GI techniques, and marks a further step forward towards real-time practical applications of correlation imaging.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا