ترغب بنشر مسار تعليمي؟ اضغط هنا

An experiment demonstrating single-pixel single-arm complementary compressive microscopic ghost imaging based on a digital micromirror device (DMD) has been performed. To solve the difficulty of projecting speckles or modulated light patterns onto ti ny biological objects, we instead focus the microscopic image onto the DMD. With this system, we have successfully obtained a magnified image of micron-sized objects illuminated by the microscopes own incandescent lamp. The image quality of our scheme is more than an order of magnitude better than that obtained by conventional compressed sensing with the same total sampling rate, and moreover, the system is robust against intensity instabilities of the light source and may be used under very weak light conditions. Since only one reflection direction of the DMD is used, the other reflection arm is left open for future infrared light sampling. This represents a big step forward toward the practical application of compressive microscopic ghost imaging in the biological and material science fields.
50 - Wen-Kai Yu , Shen Li , Xu-Ri Yao 2013
We present a protocol for the amplification and distribution of a one-time-pad cryptographic key over a point-to-multipoint optical network based on computational ghost imaging (GI) and compressed sensing (CS). It is shown experimentally that CS imag ing can perform faster authentication and increase the key generation rate by an order of magnitude compared with the scheme using computational GI alone. The protocol is applicable for any number of legitimate user, thus, the scheme could be used in real intercity networks where high speed and high security are crucial.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا