ترغب بنشر مسار تعليمي؟ اضغط هنا

Spatial computing experiences are constrained by the real-world surroundings of the user. In such experiences, augmenting virtual objects to existing scenes require a contextual approach, where geometrical conflicts are avoided, and functional and pl ausible relationships to other objects are maintained in the target environment. Yet, due to the complexity and diversity of user environments, automatically calculating ideal positions of virtual content that is adaptive to the context of the scene is considered a challenging task. Motivated by this problem, in this paper we introduce SceneGen, a generative contextual augmentation framework that predicts virtual object positions and orientations within existing scenes. SceneGen takes a semantically segmented scene as input, and outputs positional and orientational probability maps for placing virtual content. We formulate a novel spatial Scene Graph representation, which encapsulates explicit topological properties between objects, object groups, and the room. We believe providing explicit and intuitive features plays an important role in informative content creation and user interaction of spatial computing settings, a quality that is not captured in implicit models. We use kernel density estimation (KDE) to build a multivariate conditional knowledge model trained using prior spatial Scene Graphs extracted from real-world 3D scanned data. To further capture orientational properties, we develop a fast pose annotation tool to extend current real-world datasets with orientational labels. Finally, to demonstrate our system in action, we develop an Augmented Reality application, in which objects can be contextually augmented in real-time.
We study the risk of minimum-norm interpolants of data in Reproducing Kernel Hilbert Spaces. Our upper bounds on the risk are of a multiple-descent shape for the various scalings of $d = n^{alpha}$, $alphain(0,1)$, for the input dimension $d$ and sam ple size $n$. Empirical evidence supports our finding that minimum-norm interpolants in RKHS can exhibit this unusual non-monotonicity in sample size; furthermore, locations of the peaks in our experiments match our theoretical predictions. Since gradient flow on appropriately initialized wide neural networks converges to a minimum-norm interpolant with respect to a certain kernel, our analysis also yields novel estimation and generalization guarantees for these over-parametrized models. At the heart of our analysis is a study of spectral properties of the random kernel matrix restricted to a filtration of eigen-spaces of the population covariance operator, and may be of independent interest.
The performance of a machine learning system is usually evaluated by using i.i.d. observations with true labels. However, acquiring ground truth labels is expensive, while obtaining unlabeled samples may be cheaper. Stratified sampling can be benefic ial in such settings and can reduce the number of true labels required without compromising the evaluation accuracy. Stratified sampling exploits statistical properties (e.g., variance) across strata of the unlabeled population, though usually under the unrealistic assumption that these properties are known. We propose two new algorithms that simultaneously estimate these properties and optimize the evaluation accuracy. We construct a lower bound to show the proposed algorithms (to log-factors) are rate optimal. Experiments on synthetic and real data show the reduction in label complexity that is enabled by our algorithms.
We show that minimum-norm interpolation in the Reproducing Kernel Hilbert Space corresponding to the Laplace kernel is not consistent if input dimension is constant. The lower bound holds for any choice of kernel bandwidth, even if selected based on data. The result supports the empirical observation that minimum-norm interpolation (that is, exact fit to training data) in RKHS generalizes well for some high-dimensional datasets, but not for low-dimensional ones.
One of the mysteries in the success of neural networks is randomly initialized first order methods like gradient descent can achieve zero training loss even though the objective function is non-convex and non-smooth. This paper demystifies this surpr ising phenomenon for two-layer fully connected ReLU activated neural networks. For an $m$ hidden node shallow neural network with ReLU activation and $n$ training data, we show as long as $m$ is large enough and no two inputs are parallel, randomly initialized gradient descent converges to a globally optimal solution at a linear convergence rate for the quadratic loss function. Our analysis relies on the following observation: over-parameterization and random initialization jointly restrict every weight vector to be close to its initialization for all iterations, which allows us to exploit a strong convexity-like property to show that gradient descent converges at a global linear rate to the global optimum. We believe these insights are also useful in analyzing deep models and other first order methods.
It is widely believed that the practical success of Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) owes to the fact that CNNs and RNNs use a more compact parametric representation than their Fully-Connected Neural Network ( FNN) counterparts, and consequently require fewer training examples to accurately estimate their parameters. We initiate the study of rigorously characterizing the sample-complexity of estimating CNNs and RNNs. We show that the sample-complexity to learn CNNs and RNNs scales linearly with their intrinsic dimension and this sample-complexity is much smaller than for their FNN counterparts. For both CNNs and RNNs, we also present lower bounds showing our sample complexities are tight up to logarithmic factors. Our main technical tools for deriving these results are a localized empirical process analysis and a new technical lemma characterizing the convolutional and recurrent structure. We believe that these tools may inspire further developments in understanding CNNs and RNNs.
Algorithm-dependent generalization error bounds are central to statistical learning theory. A learning algorithm may use a large hypothesis space, but the limited number of iterations controls its model capacity and generalization error. The impacts of stochastic gradient methods on generalization error for non-convex learning problems not only have important theoretical consequences, but are also critical to generalization errors of deep learning. In this paper, we study the generalization errors of Stochastic Gradient Langevin Dynamics (SGLD) with non-convex objectives. Two theories are proposed with non-asymptotic discrete-time analysis, using Stability and PAC-Bayesian results respectively. The stability-based theory obtains a bound of $Oleft(frac{1}{n}Lsqrt{beta T_k}right)$, where $L$ is uniform Lipschitz parameter, $beta$ is inverse temperature, and $T_k$ is aggregated step sizes. For PAC-Bayesian theory, though the bound has a slower $O(1/sqrt{n})$ rate, the contribution of each step is shown with an exponentially decaying factor by imposing $ell^2$ regularization, and the uniform Lipschitz constant is also replaced by actual norms of gradients along trajectory. Our bounds have no implicit dependence on dimensions, norms or other capacity measures of parameter, which elegantly characterizes the phenomenon of Fast Training Guarantees Generalization in non-convex settings. This is the first algorithm-dependent result with reasonable dependence on aggregated step sizes for non-convex learning, and has important implications to statistical learning aspects of stochastic gradient methods in complicated models such as deep learning.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا