ترغب بنشر مسار تعليمي؟ اضغط هنا

Recently, intense efforts have been devoted to realizing classical analogues of various topological phases of matter. In this Letter, we explore the intriguing Weyl physics by a simple one-dimensional sonic crystal, in which two extra structural para meters are combined to construct a synthetic three-dimensional space. Based on our underwater ultrasonic experiments, we have not only observed the synthetic Weyl points directly, but also probed the novel reflection phase singularity that connects inherently with the topological robustness of Weyl points. As a smoking gun evidence of the topological states of matter, the presence of nontrivial interface modes has been demonstrated further. All experimental data agree well with our full-wave simulations. As the first realization of topological acoustics in synthetic space, our study exhibits great potential of probing high-dimensional topological phenomena by such easily-fabricated and -detected low-dimension acoustic systems.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا