ترغب بنشر مسار تعليمي؟ اضغط هنا

Spiking neural networks (SNNs) receive widespread attention because of their low-power hardware characteristic and brain-like signal response mechanism, but currently, the performance of SNNs is still behind Artificial Neural Networks (ANNs). We buil d an information theory-inspired system called Stochastic Probability Adjustment (SPA) system to reduce this gap. The SPA maps the synapses and neurons of SNNs into a probability space where a neuron and all connected pre-synapses are represented by a cluster. The movement of synaptic transmitter between different clusters is modeled as a Brownian-like stochastic process in which the transmitter distribution is adaptive at different firing phases. We experimented with a wide range of existing unsupervised SNN architectures and achieved consistent performance improvements. The improvements in classification accuracy have reached 1.99% and 6.29% on the MNIST and EMNIST datasets respectively.
Spiking Neural Network (SNN), as a brain-inspired approach, is attracting attention due to its potential to produce ultra-high-energy-efficient hardware. Competitive learning based on Spike-Timing-Dependent Plasticity (STDP) is a popular method to tr ain an unsupervised SNN. However, previous unsupervised SNNs trained through this method are limited to a shallow network with only one learnable layer and cannot achieve satisfactory results when compared with multi-layer SNNs. In this paper, we eased this limitation by: 1)We proposed a Spiking Inception (Sp-Inception) module, inspired by the Inception module in the Artificial Neural Network (ANN) literature. This module is trained through STDP-based competitive learning and outperforms the baseline modules on learning capability, learning efficiency, and robustness. 2)We proposed a Pooling-Reshape-Activate (PRA) layer to make the Sp-Inception module stackable. 3)We stacked multiple Sp-Inception modules to construct multi-layer SNNs. Our algorithm outperforms the baseline algorithms on the hand-written digit classification task, and reaches state-of-the-art results on the MNIST dataset among the existing unsupervised SNNs.
Spiking Neural Networks (SNNs) are brain-inspired, event-driven machine learning algorithms that have been widely recognized in producing ultra-high-energy-efficient hardware. Among existing SNNs, unsupervised SNNs based on synaptic plasticity, espec ially Spike-Timing-Dependent Plasticity (STDP), are considered to have great potential in imitating the learning process of the biological brain. Nevertheless, the existing STDP-based SNNs have limitations in constrained learning capability and/or slow learning speed. Most STDP-based SNNs adopted a slow-learning Fully-Connected (FC) architecture and used a sub-optimal vote-based scheme for spike decoding. In this paper, we overcome these limitations with: 1) a design of high-parallelism network architecture, inspired by the Inception module in Artificial Neural Networks (ANNs); 2) use of a Vote-for-All (VFA) decoding layer as a replacement to the standard vote-based spike decoding scheme, to reduce the information loss in spike decoding and, 3) a proposed adaptive repolarization (resetting) mechanism that accelerates SNNs learning by enhancing spiking activities. Our experimental results on two established benchmark datasets (MNIST/EMNIST) show that our network architecture resulted in superior performance compared to the widely used FC architecture and a more advanced Locally-Connected (LC) architecture, and that our SNN achieved competitive results with state-of-the-art unsupervised SNNs (95.64%/80.11% accuracy on the MNIST/EMNISE dataset) while having superior learning efficiency and robustness against hardware damage. Our SNN achieved great classification accuracy with only hundreds of training iterations, and random destruction of large numbers of synapses or neurons only led to negligible performance degradation.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا