ترغب بنشر مسار تعليمي؟ اضغط هنا

Using the first-principles density-functional theory plan-wave pseudopotential method, we investigate the structure and magnetism in 25% Mn substitutive and interstitial doped monoclinic, tetragonal and cubic ZrO2 systematically. Our studies show tha t the introduction of Mn impurities into ZrO2 not only stabilizes the high temperature phase, but also endows ZrO2 with magnetism. Based on the simple crystal field theory (CFT), we discuss the origination of magnetism in Mn doped ZrO2. Moreover, we discuss the effect of electron donor on magnetic semiconductors, and the possibility as electronic structure modulator.
The magnetism in 12.5% and 25% Mn delta-doped cubic GaN has been investigated using the density-functional theory calculations. The results show that the single-layer delta-doping and half-delta-doping structures show robust ground state half-metalli c ferromagnetism (HMF), and the double-layer delta-doping structure shows robust ground state antiferromagnetism (AFM) with large spin-flip energy of 479.0 meV per Mn-Mn pair. The delta-doping structures show enhanced two-dimensional magnetism. We discuss the origin of the HMF using a simple crystal field model. Finally, we discuss the antiferromagnet/ferromagnet heterostructure based on Mn doped GaN.
We study the electronic structure and magnetism of 25% Mn substituted cubic Zirconia (ZrO2) with several homogeneous and heterogeneous doping profiles using density-functional theory calculations. We find that all doping profiles show half-metallic f erromagnetism (HMF), and delta-doping is most energy favorable while homogeneous doping has largest ferromagnetic stabilization energy. Using crystal field theory, we discuss the formation scheme of HMF. Finally, we speculate the potential spintronics applications for Mn doped ZrO2, especially as spin direction controllment.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا