ترغب بنشر مسار تعليمي؟ اضغط هنا

We introduce and analyze stochastic optimization methods where the input to each gradient update is perturbed by bounded noise. We show that this framework forms the basis of a unified approach to analyze asynchronous implementations of stochastic op timization algorithms.In this framework, asynchronous stochastic optimization algorithms can be thought of as serial methods operating on noisy inputs. Using our perturbed iterate framework, we provide new analyses of the Hogwild! algorithm and asynchronous stochastic coordinate descent, that are simpler than earlier analyses, remove many assumptions of previous models, and in some cases yield improved upper bounds on the convergence rates. We proceed to apply our framework to develop and analyze KroMagnon: a novel, parallel, sparse stochastic variance-reduced gradient (SVRG) algorithm. We demonstrate experimentally on a 16-core machine that the sparse and parallel version of SVRG is in some cases more than four orders of magnitude faster than the standard SVRG algorithm.
Given a similarity graph between items, correlation clustering (CC) groups similar items together and dissimilar ones apart. One of the most popular CC algorithms is KwikCluster: an algorithm that serially clusters neighborhoods of vertices, and obta ins a 3-approximation ratio. Unfortunately, KwikCluster in practice requires a large number of clustering rounds, a potential bottleneck for large graphs. We present C4 and ClusterWild!, two algorithms for parallel correlation clustering that run in a polylogarithmic number of rounds and achieve nearly linear speedups, provably. C4 uses concurrency control to enforce serializability of a parallel clustering process, and guarantees a 3-approximation ratio. ClusterWild! is a coordination free algorithm that abandons consistency for the benefit of better scaling; this leads to a provably small loss in the 3-approximation ratio. We provide extensive experimental results for both algorithms, where we outperform the state of the art, both in terms of clustering accuracy and running time. We show that our algorithms can cluster billion-edge graphs in under 5 seconds on 32 cores, while achieving a 15x speedup.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا