ترغب بنشر مسار تعليمي؟ اضغط هنا

95 - Bo Wang , Wanrun Jiang , Xing Dai 2015
The covalent-like characteristics of hydrogen bonds offer a new perspective on intermolecular interactions. Here, using density functional theory and post-Hartree-Fock methods, we reveal that there are two bonding molecular orbitals (MOs) crossing th e O and H atoms of the hydrogen-bond in water dimer. Energy decomposition analysis also shows a non-negligible contribution of the induction term. These results illustrate the covalent-like character of the hydrogen bond between water molecules, which contributes to the essential understanding of ice, liquid water, related materials, and life sciences.
The structural properties of the uranium-encapsulated nano-cage U@Au14 are predicted using density functional theory. The presence of the uranium atom makes the Au14 structure more stable than the empty Au14-cage, with a triplet ground electronic sta te for U@Au14. Analysis of the electronic structure shows that the two frontier single-occupied molecular orbital electrons of U@Au14 mainly originate from the 5f shell of the U atom after charge transfer. Meanwhile, the bonding orbitals have both the 5f and 6d components of the U atom, along with the 5d and 6s components of the Au atoms, indicating the covalent nature of the interaction between the U and Au atoms. Moreover, the charge population analysis shows that this nanostructure displays some unique electronic properties where the encapsulated atom gains electrons while the outer shell loses electrons. Therefore, this designed U@Au14 nano-cage structure is stabilized by ionocovalent interactions. The current findings provide theoretical basis for future syntheses and further study of actinide doped gold nanoclusters, which might subsequently facilitate applications of such structure in radio-labeling, nanodrug carrier and other biomedical applications.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا