ترغب بنشر مسار تعليمي؟ اضغط هنا

52 - Kehan Qi , Yu Gong , Xinfeng Liu 2020
Noises, artifacts, and loss of information caused by the magnetic resonance (MR) reconstruction may compromise the final performance of the downstream applications. In this paper, we develop a re-weighted multi-task deep learning method to learn prio r knowledge from the existing big dataset and then utilize them to assist simultaneous MR reconstruction and segmentation from the under-sampled k-space data. The multi-task deep learning framework is equipped with two network sub-modules, which are integrated and trained by our designed iterative teacher forcing scheme (ITFS) under the dynamic re-weighted loss constraint (DRLC). The ITFS is designed to avoid error accumulation by injecting the fully-sampled data into the training process. The DRLC is proposed to dynamically balance the contributions from the reconstruction and segmentation sub-modules so as to co-prompt the multi-task accuracy. The proposed method has been evaluated on two open datasets and one in vivo in-house dataset and compared to six state-of-the-art methods. Results show that the proposed method possesses encouraging capabilities for simultaneous and accurate MR reconstruction and segmentation.
Multi-contrast magnetic resonance (MR) image registration is useful in the clinic to achieve fast and accurate imaging-based disease diagnosis and treatment planning. Nevertheless, the efficiency and performance of the existing registration algorithm s can still be improved. In this paper, we propose a novel unsupervised learning-based framework to achieve accurate and efficient multi-contrast MR image registrations. Specifically, an end-to-end coarse-to-fine network architecture consisting of affine and deformable transformations is designed to improve the robustness and achieve end-to-end registration. Furthermore, a dual consistency constraint and a new prior knowledge-based loss function are developed to enhance the registration performances. The proposed method has been evaluated on a clinical dataset containing 555 cases, and encouraging performances have been achieved. Compared to the commonly utilized registration methods, including VoxelMorph, SyN, and LT-Net, the proposed method achieves better registration performance with a Dice score of 0.8397 in identifying stroke lesions. With regards to the registration speed, our method is about 10 times faster than the most competitive method of SyN (Affine) when testing on a CPU. Moreover, we prove that our method can still perform well on more challenging tasks with lacking scanning information data, showing high robustness for the clinical application.
Van der Waals (vdW) solids, as a new type of artificial materials that consist of alternating layers bonded by weak interactions, have shed light on fascinating optoelectronic device concepts. As a result, a large variety of vdW devices have been eng ineered via layer-by-layer stacking of two-dimensional materials, although shadowed by the difficulties of fabrication. Alternatively, direct growth of vdW solids has proven as a scalable and swift way, highlighted by the successful synthesis of graphene/h-BN and transition metal dichalcogenides (TMDs) vertical heterostructures from controlled vapor deposition. Here, we realize high-quality organic and inorganic vdW solids, using methylammonium lead halide (CH3NH3PbI3) as the organic part (organic perovskite) and 2D inorganic monolayers as counterparts. By stacking on various 2D monolayers, the vdW solids behave dramatically different in light emission. Our studies demonstrate that h-BN monolayer is a great complement to organic perovskite for preserving its original optical properties. As a result, organic/h-BN vdW solid arrays are patterned for red light emitting. This work paves the way for designing unprecedented vdW solids with great potential for a wide spectrum of applications in optoelectronics.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا