ترغب بنشر مسار تعليمي؟ اضغط هنا

In this work, we propose a simple yet effective meta-learning algorithm in semi-supervised learning. We notice that most existing consistency-based approaches suffer from overfitting and limited model generalization ability, especially when training with only a small number of labeled data. To alleviate this issue, we propose a learn-to-generalize regularization term by utilizing the label information and optimize the problem in a meta-learning fashion. Specifically, we seek the pseudo labels of the unlabeled data so that the model can generalize well on the labeled data, which is formulated as a nested optimization problem. We address this problem using the meta-gradient that bridges between the pseudo label and the regularization term. In addition, we introduce a simple first-order approximation to avoid computing higher-order derivatives and provide theoretic convergence analysis. Extensive evaluations on the SVHN, CIFAR, and ImageNet datasets demonstrate that the proposed algorithm performs favorably against state-of-the-art methods.
Recent advances in convolutional neural networks(CNNs) usually come with the expense of excessive computational overhead and memory footprint. Network compression aims to alleviate this issue by training compact models with comparable performance. Ho wever, existing compression techniques either entail dedicated expert design or compromise with a moderate performance drop. In this paper, we propose a novel structured sparsification method for efficient network compression. The proposed method automatically induces structured sparsity on the convolutional weights, thereby facilitating the implementation of the compressed model with the highly-optimized group convolution. We further address the problem of inter-group communication with a learnable channel shuffle mechanism. The proposed approach can be easily applied to compress many network architectures with a negligible performance drop. Extensive experimental results and analysis demonstrate that our approach gives a competitive performance against the recent network compression counterparts with a sound accuracy-complexity trade-off.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا