ترغب بنشر مسار تعليمي؟ اضغط هنا

In this paper, a novel and innovative methodology for feasible motion planning in the multi-agent system is developed. On the basis of velocity obstacles characteristics, the chance constraints are formulated in the receding horizon control (RHC) pro blem, and geometric information of collision cones is used to generate the feasible regions of velocities for the host agent. By this approach, the motion planning is conducted at the velocity level instead of the position level. Thus, it guarantees a safer collision-free trajectory for the multi-agent system, especially for the systems with high-speed moving agents. Moreover, a probability threshold of potential collisions can be satisfied during the motion planning process. In order to validate the effectiveness of the methodology, different scenarios for multiple agents are investigated, and the simulation results clearly show that the proposed approach can effectively avoid potential collisions with a collision probability less than a specific threshold.
This paper investigates the cooperative planning and control problem for multiple connected autonomous vehicles (CAVs) in different scenarios. In the existing literature, most of the methods suffer from significant problems in computational efficienc y. Besides, as the optimization problem is nonlinear and nonconvex, it typically poses great difficultly in determining the optimal solution. To address this issue, this work proposes a novel and completely parallel computation framework by leveraging the alternating direction method of multipliers (ADMM). The nonlinear and nonconvex optimization problem in the autonomous driving problem can be divided into two manageable subproblems; and the resulting subproblems can be solved by using effective optimization methods in a parallel framework. Here, the differential dynamic programming (DDP) algorithm is capable of addressing the nonlinearity of the system dynamics rather effectively; and the nonconvex coupling constraints with small dimensions can be approximated by invoking the notion of semi-definite relaxation (SDR), which can also be solved in a very short time. Due to the parallel computation and efficient relaxation of nonconvex constraints, our proposed approach effectively realizes real-time implementation and thus also extra assurance of driving safety is provided. In addition, two transportation scenarios for multiple CAVs are used to illustrate the effectiveness and efficiency of the proposed method.
As a notable machine learning paradigm, the research efforts in the context of reinforcement learning have certainly progressed leaps and bounds. When compared with reinforcement learning methods with the given system model, the methodology of the re inforcement learning architecture based on the unknown model generally exhibits significantly broader universality and applicability. In this work, a new reinforcement learning architecture based on iterative linear quadratic regulator (iLQR) is developed and presented without the requirement of any prior knowledge of the system model, which is termed as an approach of a neural network iterative linear quadratic regulator (NNiLQR). Depending solely on measurement data, this method yields a completely new non-parametric routine for the establishment of the optimal policy (without the necessity of system modeling) through iterative refinements of the neural network system. Rather importantly, this approach significantly outperforms the classical iLQR method in terms of the given objective function because of the innovative utilization of further exploration in the methodology. As clearly indicated from the results attained in two illustrative examples, these significant merits of the NNiLQR method are demonstrated rather evidently.
In many specific scenarios, accurate and effective system identification is a commonly encountered challenge in the model predictive control (MPC) formulation. As a consequence, the overall system performance could be significantly degraded in outcom e when the traditional MPC algorithm is adopted under those circumstances when such accuracy is lacking. To cater to this rather major shortcoming, this paper investigates a non-parametric behavior learning method for multi-agent decision making, which underpins an alternate data-driven predictive control framework. Utilizing an innovative methodology with closed-loop input/output measurements of the unknown system, the behavior of the system is learned based on the collected dataset, and thus the constructed non-parametric predictive model can be used for the determination of optimal control actions. This non-parametric predictive control framework attains the noteworthy key advantage of alleviating the heavy computational burden commonly encountered in the optimization procedures otherwise involved. Such requisite optimization procedures are typical in existing methodologies requiring open-loop input/output measurement data collection and parametric system identification. Then with a conservative approximation of probabilistic chance constraints for the MPC problem, a resulting deterministic optimization problem is formulated and solved effectively. This intuitive data-driven approach is also shown to preserve good robustness properties (even in the inevitable existence of parametric uncertainties that naturally arise in the typical system identification process). Finally, a multi-drone system is used to demonstrate the practical appeal and highly effective outcome of this promising development.
Distributed optimization is often widely attempted and innovated as an attractive and preferred methodology to solve large-scale problems effectively in a localized and coordinated manner. Thus, it is noteworthy that the methodology of distributed mo del predictive control (DMPC) has become a promising approach to achieve effective outcomes, e.g., in decision-making tasks for multi-agent systems. However, the typical deployment of such distributed MPC frameworks would lead to the involvement of nonlinear processes with a large number of nonconvex constraints. To address this important problem, the development and innovation of a hierarchical three-block alternating direction method of multipliers (ADMM) approach is presented in this work to solve this nonconvex cooperative DMPC problem in multi-agent systems. Here firstly, an additional slack variable is introduced to transform the original large-scale nonconvex optimization problem. Then, a hierarchical ADMM approach, which contains outer loop iteration by the augmented Lagrangian method (ALM) and inner loop iteration by three-block semi-proximal ADMM, is utilized to solve the resulting transformed nonconvex optimization problem. Additionally, it is analytically shown and established that the requisite desired stationary point exists for convergence in the algorithm. Finally, an approximate optimization stage with a barrier method is then applied to further significantly improve the computational efficiency, yielding the final improved hierarchical ADMM. The effectiveness of the proposed method in terms of attained performance and computational efficiency is demonstrated on a cooperative DMPC problem of decision-making process for multiple unmanned aerial vehicles (UAVs).
Continued great efforts have been dedicated towards high-quality trajectory generation based on optimization methods, however, most of them do not suitably and effectively consider the situation with moving obstacles; and more particularly, the futur e position of these moving obstacles in the presence of uncertainty within some possible prescribed prediction horizon. To cater to this rather major shortcoming, this work shows how a variational Bayesian Gaussian mixture model (vBGMM) framework can be employed to predict the future trajectory of moving obstacles; and then with this methodology, a trajectory generation framework is proposed which will efficiently and effectively address trajectory generation in the presence of moving obstacles, and also incorporating presence of uncertainty within a prediction horizon. In this work, the full predictive conditional probability density function (PDF) with mean and covariance is obtained, and thus a future trajectory with uncertainty is formulated as a collision region represented by a confidence ellipsoid. To avoid the collision region, chance constraints are imposed to restrict the collision probability, and subsequently a nonlinear MPC problem is constructed with these chance constraints. It is shown that the proposed approach is able to predict the future position of the moving obstacles effectively; and thus based on the environmental information of the probabilistic prediction, it is also shown that the timing of collision avoidance can be earlier than the method without prediction. The tracking error and distance to obstacles of the trajectory with prediction are smaller compared with the method without prediction.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا