ترغب بنشر مسار تعليمي؟ اضغط هنا

The discovery of magic-angle twisted trilayer graphene (tTLG) adds a new twist to the family of graphene moire. The additional graphene layer unlocks a series of intriguing properties in the superconducting phase, such as the violation of Pauli limit and re-entrant superconductivity at large in-plane magnetic field. In this work, we integrate magic-angle tTLG into a double-layer structure to study the superconducting phase. Utilizing proximity screening from the adjacent metallic layer, we examine the stability of the superconducting phase and demonstrate that Coulomb repulsion competes against the mechanism underlying Cooper pairing. Furthermore, we use a combination of transport and thermodynamic measurements to probe the isospin order, which shows that the isospin configuration at half moire filling, and for the nearby fermi surface, is spin-polarized and valley-unpolarized. In addition, we show that valley isospin plays a dominating role in the Pomeranchuk effect, whereas the spin degree of freedom is frozen, which indicates small valley isospin stiffness and large spin stiffness in tTLG. Taken together, our findings provide important constraints for theoretical models aiming to understand the nature of superconductivity. A possible scenario is that electron-phonon coupling stabilizes a superconducting phase with a spin-triplet, valley singlet order parameter.
The ability to control the strength of interaction is essential for studying quantum phenomena emerging from a system of correlated fermions. For example, the isotope effect illustrates the effect of electron-phonon coupling on superconductivity, pro viding an important experimental support for the BCS theory. In this work, we report a new device geometry where the magic-angle twisted bilayer graphene (tBLG) is placed in close proximity to a Bernal bilayer graphene (BLG) separated by a 3 nm thick barrier. Using charge screening from the Bernal bilayer, the strength of electron-electron Coulomb interaction within the twisted bilayer can be continuously tuned. Transport measurements show that tuning Coulomb screening has opposite effect on the insulating and superconducting states: as Coulomb interaction is weakened by screening, the insulating states become less robust, whereas the stability of superconductivity is enhanced. Out results demonstrate the ability to directly probe the role of Coulomb interaction in magic-angle twisted bilayer graphene. Most importantly, the effect of Coulomb screening points toward electron-phonon coupling as the dominant mechanism for Cooper pair formation, and therefore superconductivity, in magic-angle twisted bilayer graphene.
Motivated by recent proposal by Potter et al. [Phys. Rev. X 6, 031026 (2016)] concerning possible thermoelectric signatures of Dirac composite fermions, we perform a systematic experimental study of thermoelectric transport of an ultrahigh-mobility G aAs/AlxGa1-xAs two dimensional electron system at filling factor v = 1/2. We demonstrate that the thermopower Sxx and Nernst Sxy are symmetric and anti-symmetric with respect to B = 0 T, respectively. The measured properties of thermopower Sxx at v = 1/2 are consistent with previous experimental results. The Nernst signals Sxy of v = 1/2, which have not been reported previously, are non-zero and show a power law relation with temperature in the phonon-drag dominant region. In the electron-diffusion dominant region, the Nernst signals Sxy of v = 1/2 are found to be significantly smaller than the linear temperature dependent values predicted by Potter et al., and decreasing with temperature faster than linear dependence.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا