ترغب بنشر مسار تعليمي؟ اضغط هنا

We investigate the mechanical properties of a doubly-clamped, double-layer nanobeam embedded into an electromechanical system. The nanobeam consists of a highly pre-stressed silicon nitride and a superconducting niobium layer. By measuring the mechan ical displacement spectral density both in the linear and the nonlinear Duffing regime, we determine the pre-stress and the effective Youngs modulus of the nanobeam. An analytical double-layer model quantitatively corroborates the measured values. This suggests that this model can be used to design mechanical multilayer systems for electro- and optomechanical devices, including materials controllable by external parameters such as piezoelectric, magnetrostrictive, or in more general multiferroic materials.
We report a highly unusual temperature dependence in the magnetoresistance of a weakly interacting high mobility 2D electron gas (2DEG) under a parallel magnetic field and when the current is perpendicular to the field. While the linear temperature d ependence below 10 K and the exponential temperature dependence above 40 K agree with existing theory of electron-phonon scattering, a field induced resistivity saturation behaviour characterized by an almost complete suppression of the temperature dependence is observed from approximately 20 to 40 K, which is in sharp contrast to the phenomenology observed when the current is parallel to the field. Possible origins of this intriguing intermediate temperature phenomenon are discussed.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا