ترغب بنشر مسار تعليمي؟ اضغط هنا

151 - Xiaohui Sun 2021
We report on the continuum and polarization observations of the Cygnus Loop supernova remnant (SNR) conducted by the Five-hundred-meter Aperture Spherical radio Telescope (FAST). FAST observations provide high angular resolution and high sensitivity images of the SNR, which will help to disentangle its nature. We obtained Stokes I, Q and U maps over the frequency range of 1.03 - 1.46 GHz split into channels of 7.63 kHz. The original angular resolution is in the range of ~3 arcmin - ~3.8 arcmin, and we combined all the data at a common resolution of 4 arcmin. The temperature scale of the total intensity and the spectral index from the in-band temperature-temperature plot are consistent with previous observations, which validates the data calibration and map-making procedures. The rms sensitivity for the band-averaged total-intensity map is about 20 mK in brightness temperature, which is at the level of confusion limit. For the first time, we apply rotation measure (RM) synthesis to the Cygnus Loop to obtain the polarization intensity and RM maps. The rms sensitivity for polarization is about 5 mK, far below the total-intensity confusion limit. We also obtained RMs of eight extra-galactic sources, and demonstrate that the wide-band frequency coverage helps to overcome the ambiguity of RM determinations.
129 - Xianghua Li 2020
We present a radio polarization study of the supernova remnant CTB 80 based on images at 1420 MHz from the Canadian Galactic plane survey, at 2695 MHz from the Effelsberg survey of the Galactic plane, and at 4800 MHz from the Sino-German 6cm polariza tion survey of the Galactic plane. We obtained a rotation measure (RM) map using polarization angles at 2695 MHz and 4800 MHz as the polarization percentages are similar at these two frequencies. RM exhibits a transition from positive values to negative values along one of the shells hosting the pulsar PSR B1951+32 and its pulsar wind nebula. The reason for the change of sign remains unclear. We identified a partial shell structure, which is bright in polarized intensity but weak in total intensity. This structure could be part of CTB 80 or part of a new supernova remnant unrelated to CTB 80.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا