ترغب بنشر مسار تعليمي؟ اضغط هنا

We propose an extended primal-dual algorithm framework for solving a general nonconvex optimization model. This work is motivated by image reconstruction problems in a class of nonlinear imaging, where the forward operator can be formulated as a nonl inear convex function with respect to the reconstructed image. Using the proposed framework, we put forward six specific iterative schemes, and present their detailed mathematical explanation. We also establish the relationship to existing algorithms. Moreover, under proper assumptions, we analyze the convergence of the schemes for the general model when the optimal dual variable regarding the nonlinear operator is non-vanishing. As a representative, the image reconstruction for spectral computed tomography is used to demonstrate the effectiveness of the proposed algorithm framework. By special properties of the concrete problem, we further prove the convergence of these customized schemes when the optimal dual variable regarding the nonlinear operator is vanishing. Finally, the numerical experiments show that the proposed algorithm has good performance on image reconstruction for various data with non-standard scanning configuration.
A potential application for spectral computed tomography (CT) with multi-energy-window photon-counting detectors is quantitative medical imaging with K-edge contrast agents. Image reconstruction for spectral CT with such contrast agents necessitates expression of the X-ray linear attenuation map in at least three expansion functions, for example, bone/water/K-edge-material or photo-electric- process/Compton-process/K-edge-material. The use of three expansion functions can result in slow convergence for iterative image reconstruction (IIR) algorithms applied to spectral CT. We propose a block-diagonal step-preconditioner for use with a primal-dual iterative image reconstruction framework that we have been developing for spectral CT. We demonstrate the advantage of the new step-preconditioner on a sensitive spectral CT simulation where the test object has low concentration of Gadolinium (Gd) contrast agent and the X-ray attenuation map is represented by three materials - PMMA, a soft-tissue equivalent, Aluminum, a bone equivalent, and Gd.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا