ترغب بنشر مسار تعليمي؟ اضغط هنا

The topological properties in topological superconductors are usually characterized by the bulk Chern numbers, edge-state spectra, and Majorana zero modes. Whether they are equivalent or inequivalent is not well understood. Here, we investigate this issue with focus on a checkerboard-lattice model combining the Chern insulator and chiral $p$-wave superconductivity. Multiple topologically superconducting phases with Chern numbers up to $mathcal{N}=4$ are produced. We explicitly demonstrate the mismatch between the Chern numbers, edge states and Majorana zero modes in this two-dimensional topological-superconductor model. The intrinsic reason is that some edge states in the superconducting phases inherited from the Chern-insulator phase are not protected by the particle-hole symmetry. We further check the mismatches in vortex states. Our results therefore clarify these different but complementary topological features and suggest that further considerations are required to characterize various topological superconductors.
Symmetry-protected photonic topological insulator exhibiting robust pseudo-spin-dependent transportation, analogous to quantum spin Hall (QSH) phases and topological insulators, are of great importance in fundamental physics. Such transportation robu stness is protected by time-reversal symmetry. Since electrons (fermion) and photons (boson) obey different statistics rules and associate with different time-reversal operators (i.e., Tf and Tb, respectively), whether photonic counterpart of Kramers degeneracy is topologically protected by bosonic Tb remains unidentified. Here, we construct the degenerate gapless edge states of two photonic pseudo-spins (left/right circular polarizations) in the band gap of a two-dimensional photonic crystal with strong magneto-electric coupling. We further demonstrated that the topological edge states are in fact protected by Tf rather than commonly believed Tb and their pseudo-spin dependent transportation is robust against Tf invariant impurities, discovering for the first time the topological nature of photons. Our results will pave a way towards novel photonic topological insulators and revolutionize our understandings in topological physics of fundamental particles.
We propose an optical counterpart of the quantum spin Hall (QSH) effect in a two-dimensional photonic crystal composed of a gyrotropic medium exhibiting both gyroelectric and gyromagnetic properties simultaneously. Such QSH effect shows unidirectiona l polarization-dependent transportation of photonic topological edged states, which is robust against certain disorders and impurities. More importantly, we find that such unique property is not protected by conventional time-reversal symmetry of photons obeying the Bosonic statistics but rather by the same symmetry, as electrons time-reversal symmetry. Based on the tight-binding approximation approach, we construct an effective Hamiltonian for this photonic structure, which is shown to have a similar form to that of an electronic QSH system. Furthermore, the invariant of such model is calculated in order to unify its topological non-trivial character. Our finding provides a viable way to exploit the optical topological property, and also can be leveraged to develop a photonic platform to mimic the spin properties of electrons.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا