ترغب بنشر مسار تعليمي؟ اضغط هنا

We fit the spectral energy distributions (SEDs) of a GeV-TeV FSRQ sample with the leptonic model. Their gamma_min of the relativistic electron distributions, which significantly affect the estimates of the jet properties, are constrained, with a typi cal value of 48. Their jet power, magnetized parameter, radiation efficiency, and jet production/radiation rates per central black hole (BH) mass are derived and compared to that of BL Lacs. We show that he FSRQ jets may be dominated by the Poynting flux and have a high radiation efficiency, whereas the BL Lac jets are likely dominated by particles and have a lower radiation efficiency than FSRQs. Being different from BL Lacs, the jet powers of FSRQs are proportional to their central BH masses. The jet production and radiation rates of the FSRQs distribute in narrow ranges and are correlated with each other, whereas no similar feature is found for the BL Lacs. We also show that the jet power is correlated with the cavity kinetic power, and the magnetic field energy in the jets may provide the cavity kinetic energy of FSRQs and the kinetic energy of cold protons in the jets may be crucial for cavity kinetic energy of BL Lacs. We suggest that the dominating formation mechanism of FSRQ jets may be the BZ process, but BL Lac jets may be produced via the BP and/or BZ processes, depending on the structures and accretion rates of accretion disks.
Gamma-ray bursts (GRBs) and GeV-TeV selected radio loud Active Galactic Nuclei (AGNs) are compared based on our systematic modeling of the observed spectral energy distributions of a sample of AGNs with a single-zone leptonic model. We show that the correlation between the jet power (P_{jet}) and the prompt gamma-ray luminosity (L_{jet}) of GRBs is consistent, within the uncertainties, with the correlation between jet power and the synchrotron peak luminosity (L_{s, jet}) of flat spectrum radio quasars (FSRQs). Their radiation efficiencies (varepsilon) are also comparable (>10% for most sources), which increase with the bolometric jet luminosity (L_{bol,jet}) for FSRQs and with the L_{jet} for GRBs with similar power-law indices. BL Lacs do not follow the P_{jet}-L_{s, jet} relation of FSRQs. They have lower varepsilon and L_{bol, jet} values than FSRQs, and a tentative L_{bol, jet}-varepsilon relation is also found, with a power-law index being different from that of the FSRQs. The magnetization parameters (sigma) of FSRQs are averagely larger than that of BL Lacs. They are anti-correlated with $varepsilon$ for the FSRQs, but positive correlated with varepsilon for the BL Lacs. GeV Narrow-line Seyfert 1 galaxies potentially share similar properties with FSRQs. Based on the analogy between GRBs and FSRQs, we suggest that the prompt gamma-ray emission of GRBs is likely produced by synchrotron process in a magnetized jet with high radiation efficiency, similar to FSRQs. The jets of BL Lacs, on the other hand, are less efficient and are likely more matter dominated.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا