ترغب بنشر مسار تعليمي؟ اضغط هنا

112 - Kai Zhang 2011
We use homogeneous samples of radio-quiet Seyfert 1 galaxies and QSOs selected from the Sloan Digital Sky Survey to investigate the connection between the velocity shift and the equivalent width (EW) of the [OIII] 5007 emission line, and their correl ations with physical parameters of active galactic nuclei (AGNs). We find a significant and negative correlation between the EW of the core component, EW(core), and the blueshift of either the core (the peak), the wing, or the total profile of [OIII] emission; it is fairly strong for the blueshift of the total profile particularly. However, both quantities (EW and velocity shift) generally have only weak, if any, correlations with fundamental AGN parameters such as the nuclear continuum luminosity at 5100 L_{5100}, black hole mass (M_{BH}), and the Eddington ratio (L/L_{Edd}); these correlations include the classical Baldwin effect of EW(core), an inverse Baldwin effect of EW(wing), and the relationship between velocity shifts and lratio. Our findings suggest that both the large object-to-object variation in the strength of [OIII] emission and the blueshift--EW(core) connection are not governed primarily by fundamental AGN parameters such as L_{5100}, M_{BH} and L/L_{Edd}. We propose that the ISM conditions of the host galaxies play a major role instead in the diversity of the [OIII] properties in active galaxies. This suggests that the use of[OIII] 5007 luminosity as proxy of AGN luminosity does not depend strongly on the above-mentioned fundamental AGN parameters.
117 - Xiao-Bo Dong 2010
From detailed spectral analysis of a large sample of low-redshift active galactic nuclei (AGNs) selected from the Sloan Digital Sky Survey, we demonstrate---statistically for the first time---that narrow optical Fe II emission lines, both permitted a nd forbidden, are prevalent in type 1 AGNs. Remarkably, these optical lines are completely absent in type 2 AGNs, across a wide luminosity range, from Seyfert 2 galaxies to type 2 quasars. We suggest that the narrow FeII-emitting gas is confined to a disk-like geometry in the innermost regions of the narrow-line region on physical scales smaller than the obscuring torus.
In the unification scheme, narrow-lined (type 2) active galactic nuclei (AGN) are intrinsically similar to broad-lined (type 1) AGN with the exception that the line of sight to the broad emission line region and accretion disk is blocked by a dusty t orus. The fraction of type 1 AGN measures the average covering factor of the torus. In this paper, we explore the dependence of this fraction on nuclear properties for a sample of low redshift (z <0.35) radio strong (P_{1.4GHz} >10^{23}W/Hz) AGN selected by matching the spectroscopic catalog of Sloan Digital Sky Survey and the radio source catalog of Faint Image of Radio Sky at Twenty cm. After correcting for several selection effects, we find that : (1) type 1 fraction $f_1$ keeps at a constant of ~20 per cent in the [O III] 5007 luminosity range of 40.7< log(L_{[O III]}/ erg/s) <43.5 . This result is significantly different from previous studies, and the difference can be explained by extinction correction and different treatment of selection effects. (2) $f_1$ rises with black hole mass from ~20 per cent (M_bh below 10^8 Msun) to ~30 per cent (M_bh above that). This coincides with the decrease of the fraction of highly-inclined disk galaxies with black hole mass, implying a population of Seyfert galaxies seen as type 2 due to galaxy-scale obscuration in disk when the host galaxy type transfer from bulge-dominant to disk-dominant. (3) $f_1$ is independent of the Eddington ratio for its value between 0.01 and 1; (4) $f_1$ ascends from 15 per cent to 30 per cent in the radio power range of 23< log(P_{1.4GHz}/ W/Hz) <24, then remain a constant at ~30 per cent up to 10^{26} W/Hz.
82 - Jian-Guo Wang 2009
We investigate the relationship between the linewidths of broad Mg II lambda2800 and Hbeta in active galactic nuclei (AGNs) to refine them as tools to estimate black hole (BH) masses. We perform a detailed spectral analysis of a large sample of AGNs at intermediate redshifts selected from the Sloan Digital Sky Survey, along with a smaller sample of archival ultraviolet spectra for nearby sources monitored with reverberation mapping. Careful attention is devoted to accurate spectral decomposition, especially in the treatment of narrow-line blending and Fe II contamination. We show that, contrary to popular belief, the velocity width of Mg II tends to be smaller than that of Hbeta, suggesting that the two species are not cospatial in the broad-line region. Using these findings and recently updated BH mass measurements from reverberation mapping, we present a new calibration of the empirical prescriptions for estimating virial BH masses for AGNs using the broad Mg II and Hbeta lines. We show that the BH masses derived from our new formalisms show subtle but important differences compared to some of the mass estimators currently used in the literature.
We have investigated the ensemble regularities of the equivalent widths (EWs) of MgII 2800 emission line of active galactic nuclei (AGNs), using a uniformly selected sample of 2092 Seyfert 1 galaxies and quasars at 0.45 <= z <= 0.8 in the spectroscop ic data set of Sloan Digital Sky Survey Fourth Data Release. We find a strong correlation between the EW of MgII and the AGN Eddington ratio (L/L_Edd): EW(MgII) propto (L/L_Edd)^{-0.4}. Furthermore, for AGNs with the same L/L_Edd, their EWs of MgII show no correlation with luminosity, black hole mass or line width, and the MgII line luminosity is proportional to continuum luminosity, as expected by photoionization theory. Our result shows that MgII EW is not dependent on luminosity, but is solely governed by L/L_Edd.
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا